TABLE OF CONTENTS

Volume 27 (4)

Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon

NORTH M.K., DALLE ZOTTE A., HOFFMAN L.C. 185

Effects of replacement of alfalfa by big-leaf mulberry on growth performance, digestion and meat quality in growing rabbits

Does wild rabbit population size affect connectivity?

MACHADO R., SANTOS P. 207

High doses of cobalt inhibited hair follicle development in Rex Rabbits

LIU L., GAO Q., WANG C., FU Z.H., WANG K., LI F.C. 217

Performance of rabbit does housed in collective pens and individual cages

MACHADO L.C., MARTINEZ-PARDOS E., CERVERA C. 227

Effects of sublethal doses of gossypol on haematological properties and biochemical metabolites of male rabbit

RAHARIJA A., RAHARJA A.M. 237

Identification of two novel single nucleotide polymorphism sites in the Myostatin (MSTN) gene and their association with carcass traits in meat-type rabbits (Oryctolagus cuniculus)

YANG L.Q., ZHANG K., WU Q.Y., LI J., LE S.J., SONG T.Z., ZHANG M. 249
World Rabbit Science is the official journal of the World Rabbit Science Association (WRSA). One of the main objectives of the WRSA is to encourage communication and collaboration among individuals and organisations associated with rabbit production and rabbit science in general.

World Rabbit Science is the only international peer-reviewed journal included in the ISI Thomson Scientific devoted to publishing original research in the field of rabbit science. World Rabbit Science is indexed and abstracted in the SciSearch®, Current Contents® and Focus On (Veterinary Science & Medicine) since the beginning of 2005. Papers or reviews of the literature submitted to World Rabbit Science must not have been published previously in an international refereed scientific journal. Previous presentations at a scientific meeting, field day reports or similar documents can be published in World Rabbit Science, but they will be also subjected to peer-review process.

World Rabbit Science is published in English four times a year in a single volume. Authors may publish in World Rabbit Science regardless of the membership in the World Rabbit Science Association, although joining the WRSA is highly encouraged. Views expressed in papers published in World Rabbit Science represent the opinion of the author(s) and do not necessarily reflect the official policy of the WRSA or the Editor in Chief.

World Rabbit Science Committee of the World Rabbit Science Association

Editorial Office
World Rabbit Science
Instituto de Ciencia y Tecnología Animal
Universitat Politècnica de València.
Camino de Vera s/n, 46071 Valencia, Spain

Editorial Secretary
C. Larro, Managing Editor
Contact for questions on relations with Section Editors, submissions and proofs.
Universitat Politècnica de València. Editorial UPV
Camino de Vera s/n, 46071 Valencia, Spain.
colarma@editorial.upv.es

Subscription Information
Volume 27, 2019, 4 issues: 80 €
For more information, contact the Editorial UPV:
pedidos@editorial.upv.es

Published by
Universitat Politècnica de València.
Camino de Vera s/n, 46071 Valencia, Spain.
Instructions to authors are available at:
www.wrs.upv.es

World Rabbit Science 2nd Series
Printed in Spain by: Byprint percom, s.l.
Cover design: A. Climent. Universitat Politècnica de València.
ISSN: 1257-5011
EISSN: 1989-8886
COMPOSITION OF RABBIT CAECAL MICROBIOTA AND THE EFFECTS OF DIETARY QUERCETIN SUPPLEMENTATION AND SEX THEREUPON

NORTH M.K.*, DALLE ZOTTE A.†, HOFFMAN L.C.‡

*Department of Animal Sciences, Stellenbosch University, Private Bag X1, Matieland, STELENBOSCH 7602, South Africa.
†Department of Animal Medicine, Production and Health, University of Padova, Agrigoplin, Viale dell’Università, 16, 35020 LEGRANDO, Padova, Italy.
‡Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Road, COOPERS PLAINS 4108, Australia.

Abstract: The purpose of this study was to add to the current understanding of rabbit caecal microbiota. This involved describing its microbial composition and linking this to live performance parameters, as well as determining the effects of dietary quercetin (Qrc) supplementation (2 g/kg feed) and sex on the microbial population. The weight gain and feed conversion ratio of twelve New Zealand White rabbits was measured from 5 to 12 wk old, blood was sampled at 11 wk old for the determination of serum hormone levels, and the rabbits were slaughtered and caecal samples collected at 13 wk old. Ion 16S metagenome sequencing was used to determine the microbiota profile. The dominance of Firmicutes (72.01±1.14% of mapped reads), Lachnospiraceae (23.94±1.01%) and Ruminococcaceae (19.71±1.07%) concurred with previous reports, but variation both between studies and individual rabbits was apparent beyond this. Significant correlations between microbial families and live performance parameters were found, suggesting that further research into the mechanisms of these associations could be useful. Negative correlations with the caecal flavonoid content were found, but the latter was not affected by diet, and the effects of quercetin supplementation on the microbiota were very limited, possibly due to the absorption of the quercetin-aglycone from the gastrointestinal tract prior to the caecum. Nonetheless, Clostridiales Family XIII. Incertae Sedis was more abundant in the quercetin-supplemented rabbits (Control: 0.003±0.003%; Qrc: 0.020±0.000; P=0.005), as was the genus Anaerofustis (Control: 0.000±0.002; Qrc: 0.010±0.002; P=0.003). Serum cortisol levels were higher in females, and several microbial families differed between the sexes. Most were more abundant in female rabbits, including the most abundant, the family Eubacteriaceae (Male: 2.93±0.40; Female: 4.73±0.40; P=0.01).

Key Words: flavonoid, growth, gut, microbiota, Oryctolagus cuniculus, rabbit.

INTRODUCTION

Rabbits rely on their commensal gut microbiota for assistance in the digestion of fibrous plant material and thus the supply of important nutrients, with the majority of microbial fermentation taking place in the caecum (Combes et al., 2013). Caecal short-chain fatty acid production is suggested to account for 30-50% of maintenance energy requirements, while bacterial proteins, which are consumed during caecotrophy (the consumption of specifically produced soft faeces), can contribute 15% or more of the total ingested nitrogen in adults (Combes et al., 2013). The caecal bacterial population is also an essential source of vitamins, particularly biotin, thiamine, cobalamin, riboflavin, folic acid and niacin (McBee, 1971).

The complexity and stability of the gut microbial ecosystem is also important for the prevention of disease, as it serves as a protective barrier and plays a role in development of the immune system and intestinal mucosa (Combes et al., 2013).
This aspect of host-bacteria interaction is of particular interest in rabbits, for which post-weaning mortalities due to digestive disturbances are very high (Michelland et al., 2010).

It is consequently important that the composition of the caecal microbiota is understood, and that the effects of any dietary manipulation are elucidated, particularly in the case of substances with antimicrobial properties, such as flavonoids (Cushnie and Lamb, 2005; Lee et al., 2006). Flavonoids have been reported to both alter the gut microbial profile (Duda-Chodak, 2012; Espley et al., 2014; Oteiza et al., 2018), and be affected by it, as the gut microbiota can metabolise flavonoids and thereby alter their absorption and biological effects (Lin et al., 2003; Oteiza et al., 2018).

The purpose of this study was to describe the composition of the rabbit caecal microbiota and investigate the link between this and live performance, as well as to investigate the possible effects of dietary quercetin supplementation and sex on this microbial population.

MATERIALS AND METHODS

Ethical clearance for this study was obtained from the Stellenbosch University Animal Care and Use Committee (protocol number SU-ACUD16-00094).

Rearing and sampling

Twelve (6 male, 6 female) New Zealand White rabbits reared at the Mariendahl Experimental Farm outside Stellenbosch in the Western Cape of South Africa were used for the study. They were weaned at 5 wk old, and assigned to treatment groups according to sex and weaning weight, so that there were 3 male and 3 female rabbits per dietary treatment group, and the average weights of the rabbits in each treatment group were comparable. The treatment diets were provided *ad libitum* from weaning, and consisted of two complete, pelleted feeds, one control (Ctrl) and one supplemented with 2 g quercetin dihydrate/kg feed (Qrc). The control diet contained predominantly alfalfa meal (36.2%), wheat bran (35.6%) and sunflower meal (12.6%), with 88.3% dry matter (DM), 19.0% crude fibre, 18.5% crude protein, 8.3% ash and 3.7% ether extract (see North et al., 2018 for full composition). The quercetin dihydrate was extracted from *Sophorae japonica* flowers (Chengdu Okay Plant and Chemical Co., Ltd, Chengdu, China), and was added to the feed during mixing and prior to pelleting.

The rabbits were housed in individual cages in two rooms with 12L:12D light regimes during the growth period, with the males and females and dietary treatments being distributed between the two rooms. Each rabbit was assigned an identifying code based on the dietary treatment (Q or C), sex (M or F) and cage number, resulting in the following 12 codes: CM9, CM35 and CM 83 (control males), CF14, CF58 and CF88 (control females), QM11, QM37 and QM63 (quercetin males), and QF16, QF60 and QF86 (quercetin females). During the growth period, from 5 to 12 wk of age, the live weight (LW) of the individual rabbits was determined weekly, as was the daily feed intake, so that the feed conversion ratio (FCR) could be calculated. At 11 wk old, blood samples were collected from the rabbits via the central ear artery, and the free thyroxine (fT4), free triiodothyronine (fT3), somatotropin (GH) and cortisol contents of the serum were determined, as described by North et al. (2018).

The temperature and humidity of the grower rooms was measured during the growth period using automatic loggers (LogTag humidity and temperature recorder, Model HAX0-8). The average temperature and humidity in room A (rabbits CM9, CM35 CF14, QM11, QM37 and QF16) was 14.9±0.21°C and 72.3±0.96%, and in room B (rabbits CM 83, CF58, CF88, QM63, QF60 and QF86) was 16.4±0.14°C and 63.4±0.73%. All the rabbits used in this study were healthy throughout the growth period.

At 13 wk of age the rabbits were slaughtered, without prior fasting, at an abattoir on the experimental farm. They were electrically stunned and exsanguinated via the carotid arteries and jugular veins, and the gastrointestinal tracts were removed and collected. Samples of the caecal content for microbial DNA extraction were collected in a sterile manner from approximately 3 cm from the ileocaecal junction. Additional samples were collected for determination of the total flavonoid content, and the pH of the caecal content was measured using a calibrated Crison PH25 portable pH meter with a 50 54 electrode (Crisson Instruments S.A., Barcelona, Spain).

Total flavonoid content determination

Caecal content samples were lyophilised (CHRIST, model ALPHA 1-4/LDC-1M) until a constant pressure of 0.037-0.040 mbar was attained (ca. 72 h), indicating complete drying. They were ground using a mortar and pestle...
prior to flavonoid extraction. Flavonoid extraction was performed according to the method of Vasantha Rupasinghe et al. (2008), with modifications as described in full by North et al. (2018). The colorimetric assay was performed as described by Herald et al. (2012), as also described by North et al. (2018), with the exception that 25 µL, rather than 10 µL, of flavonoid extract was used for the assay. The total flavonoid content was quantified using a quercetin (Sigma-Aldrich, Steinheim, Germany) standard (25-500 µg/mL, R² = 0.997), and is expressed as mg quercetin equivalents/g DM.

16S<TM> metagenome sequencing

Microbial DNA was extracted from fresh caecal content samples using the PureLink™ Microbiome DNA Purification Kit (ThermoFisher Scientific) according to the manufacturer’s protocol (MAN0014266 Rev. A.0). Briefly, ca. 100 mg of each sample was homogenised with 700 µL S1 Lysis buffer in a bead tube. The DNA was bound to the column and washed, and subsequently eluted in 100 µL buffer using two sequential 50 µL elution steps. The total DNA contents of the extracts were quantified with the Qubit 2.0 Fluorometer, using the Qubit dsDNA HS assay kit according to the protocol (MAN0002326 REVA.0). To confirm the presence of bacterial gDNA in the sample material, the Femto™ Bacterial DNA Quantification Kit was used according to the manufacturer’s protocol (Ver. 1.0.0). The bacterial DNA quantity and quality was considered sufficient for library construction. The ion 16S<TM> Metagenomics Kit was used to amplify hypervariable regions from the polybacterial samples according to the protocol (MAN0010799 REV C.0). Two primer sets were used, one which amplified hypervariable regions V2, V4 and V8, and the other V3, V6, V7 and V9. Target regions were amplified from 2 µL gDNA across 25 cycles on the SimplyAmp Thermal Cycler (ThermoFisher Scientific). The presence of amplified products was verified on the PerkinElmer LabChip GXII Touch using the DNA NGS 3K LabChip and Reagent Kit according to the protocol (CLS145099 Rev. D). Following verification, PCR products were pooled and purified with Agencourt™ AMPure™ XP reagent and eluted in 15 µL nuclease-free water. Purified amplicons were quantified with the Qubit 2.0 Fluorometer using the Qubit dsDNA HS assay kit.

Library preparation was performed from 50 ng pooled amplicons for each sample using the Ion Plus Fragment Library Kit according to the protocol (MAN0006846, REV B.0). Briefly, amplified fragments were end-repaired in preparation for blunt-end ligation to IonCode™ Barcode Adapters. The adapter-ligated, barcoded library was purified with Agencourt™ AMPure™ XP reagent and subsequently quantified using the Ion Universal Library Quantitation Kit. The StepOnePlus™ Real-time PCR system was used to perform the quantitative polymerase chain reaction (qPCR) amplification. Libraries were diluted to a target concentration of 10 pM, and the 16S libraries were combined in equimolar amounts for template preparation, which was performed using the Ion 520™ and Ion 530™ Chef Kit. In brief, 25 µL of the pooled library was loaded onto the Ion Chef liquid handler using reagents, solutions and supplies according to the protocol (MAN0010846, REV.D.0). Enriched, template positive ion sphere particles were loaded onto an Ion 530™ Chip. Massively parallel sequencing was performed on the Ion S5™ System using the Ion SS™ sequencing solutions and sequencing reagent kits according to the protocol (MAN0010846, REV.D.0). Flow space calibration and base caller analyses were performed using default analysis parameters in the Torrent Suite Version 5.6.0 Software. Run data was uploaded to an IonReporter™ cloud account for mapping and annotation of the identified sequences, with the Basic Local Alignment Search Tool (BLAST) being used to align sequences to the curated MicroSEQ® 16S v2013.1 and Greengenes v13.5 reference libraries. Reads with fewer than ten copies were ignored. Alpha and beta diversity analysis was performed using the QIIME 1.9.1 open-source bioinformatics pipeline, through IonReporter™. The bacterial composition (per operational taxonomic unit, OTU) is reported as the percentage of the total mapped reads (for all primers) per sample.

Statistical analysis

Each rabbit constituted an experimental unit for statistical analysis. Data was analysed using Statistica version 13 software, with normality being tested using normal probability plots, and homoscedasticity using Levene’s test. Univariate tests of significance for the main effects (diet and sex) and their interaction, were performed using the general linear model procedure, with Fisher’s LSD test being performed to compare the individual diet-sex treatment groups. Pearson’s correlation coefficients were calculated to measure the strength and direction of any relationships between the bacterial families and the total LW gain from 5 to 12 wk old, the average FCR from 5 to 12 wk, the serum hormone levels and the caecal flavonoid content and pH. Main effects and interactions with P<0.05 were considered significant, and values are reported as least square means (LSM), with the standard error of the mean (SEM) provided.
RESULTS

The LW gain, FCR and serum fT3, fT4 and GH contents did not differ between the sexes or dietary treatment groups (Table 1), while the cortisol content was higher in females than males ($P=0.02$). Neither the caecal pH nor caecal flavonoid content differed between the diets or sexes, with an average pH of 5.59 and an average flavonoid content of 3.90 mg quercetin equivalent/g DM being found.

For the metagenome sequencing, there was an average of 625 783±119 957 total reads for the caecal microbial DNA samples, with 399 460±76 621 valid reads and 162 266±36 149 mapped reads per sample. The alpha diversity plots (Figure 1A and B) indicated that the sequencing depth used was sufficient, as indicated by the plateau in the rarefaction measures. The treatment groups did not appear to differ in diversity at the family level (Figure 1); however,

Table 1: Live performance, caecal content conditions and serum hormone levels of male and female New Zealand White grower rabbits fed control or quercetin-supplemented (2 g/kg) diets.

<table>
<thead>
<tr>
<th>Diet</th>
<th>Overall</th>
<th>Ctrl</th>
<th>Qrc</th>
<th>SEM</th>
<th>P-value</th>
<th>Male</th>
<th>Female</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2039</td>
<td>2032</td>
<td>2046</td>
<td>166</td>
<td>0.95</td>
<td>1970</td>
<td>2108</td>
<td>166</td>
<td>0.57</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qrc</td>
<td>3.86</td>
<td>4.11</td>
<td>3.69</td>
<td>0.23</td>
<td>0.22</td>
<td>4.01</td>
<td>3.79</td>
<td>0.23</td>
<td>0.52</td>
</tr>
<tr>
<td>Caecal pH</td>
<td>5.59</td>
<td>5.61</td>
<td>5.57</td>
<td>0.08</td>
<td>0.73</td>
<td>5.49</td>
<td>5.69</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>Serum fT3(ng/mL)</td>
<td>3.38</td>
<td>2.94</td>
<td>3.83</td>
<td>0.80</td>
<td>0.45</td>
<td>3.92</td>
<td>2.85</td>
<td>0.80</td>
<td>0.37</td>
</tr>
<tr>
<td>Serum fT4(ng/mL)</td>
<td>4.70</td>
<td>5.61</td>
<td>3.78</td>
<td>0.61</td>
<td>0.07</td>
<td>5.16</td>
<td>4.23</td>
<td>0.61</td>
<td>0.31</td>
</tr>
<tr>
<td>Serum GH (ng/mL)</td>
<td>1.25</td>
<td>1.13</td>
<td>1.36</td>
<td>0.30</td>
<td>0.60</td>
<td>1.10</td>
<td>1.40</td>
<td>0.30</td>
<td>0.49</td>
</tr>
<tr>
<td>Serum cortisol (ng/mL)</td>
<td>8.50</td>
<td>6.84</td>
<td>10.16</td>
<td>2.00</td>
<td>0.27</td>
<td>4.28</td>
<td>12.72</td>
<td>2.00</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Ctrl: Control; Qrc: Quercetin-supplemented; SEM: Standard error of the mean; FCR: Feed conversion ratio
mg Q/g DM: mg quercetin equivalent/gram dry matter; fT3: Free triiodothyronine; fT4: Free thyroxine; GH: Somatotropin.

Figure 1: Alpha diversity at the family level of the caecal microbiota of male (M) and female (F) New Zealand White grower rabbits, fed either a control (C) or quercetin-supplemented (Q, 2 g/kg feed) diet: Rarefaction curves of average (A) observed operational taxonomic units (OTUs) at 97 % similarity, and (B) Chao1 index values for each treatment group.
one sample, QF 16, had considerably higher levels of microbial diversity than the other samples, with a larger number of OTUs being identified.

In accordance with the alpha diversity results, no clear separation of the treatment groups was seen at the species level in the Bray-Curtis beta diversity principle coordinate plots (Figure 2), suggesting that the overall diversity was more due to individual than treatment differences. However, two samples from Qrc rabbits, QM37 and QF16, had very different microbiota compositions at the family level to the other samples, with the latter concurring with the higher diversity seen in Figure 1.

At the phylum level (Figure 3), the dominant group in all the samples was *Firmicutes*, making up an average of 72.01±1.14% of the total mapped reads, followed by *Proteobacteria* (11.14±0.96%), *Bacteroidetes* (9.82±1.54%), *Actinobacteria* (3.67±0.26%), *Tenericutes* (1.42±0.22%) and *Verrucomicrobia* (1.28±0.16%). While some of the phyla were only present at very low levels, but were detected in all the samples, such as *Spirochaetes* (0.08±0.01%) and *Synergistetes* (0.13±0.03%), *Deinococcus-Thermus* (0.22±0.12%) was only present in a few of the samples, and *Nitrospinae* was only detected in one sample (0.01% in QF60), and was consequently not included in Figure 3.

As expected, families falling within the *Firmicutes* phylum dominated the microbiota (Figure 4), particularly *Lachnospiraceae* (23.94±1.01%), *Ruminococcaceae* (19.71±1.07%) and *Clostridiaceae* (10.17±0.74%), all of which also fall within the order *Clostridiales*, which was the most prevalent order (62.27±1.39%). The remaining prominent families were *Desulfovibrionaceae* (7.65±0.77%), *Eubacteriaceae* (3.83±0.38%), *Bacteroidaceae* (4.19±0.91%) and *Porphyromonadaceae* (4.05±0.63%), with both of the latter belonging to the phylum *Bacteroidetes*. The latter two also both belong to the order *Bacteroidales* (9.05±1.47%), which was the second most prevalent order. The majority of the families detected (67 of 83) had abundances of less than 1% of the total mapped reads, and many were only present in a few of the samples, and were consequently not statistically analysed.

Only ca. 3.8% of the total mapped reads were identified to the species level, with 85.13±1.02% having family level identification and 10.92±0.78% having genus level identification. The proportion of the total mapped reads identified as species also varied widely between individuals, from 2.49% to 6.76%.

Figure 2: Bray-Curtis plots indicating the beta diversity at the (A) family and (B) species level of the caecal microbiota of male and female New Zealand White grower rabbits fed either a control (Ctrl) or quercetin-supplemented (Qrc, 2 g/kg) diet. Points indicate individual samples, with solid black circles representing Ctrl males (CM), solid grey circles Ctrl females (CF), open black circles Qrc males (QM) and open grey circles Qrc females (QF).
Figure 3: Relative abundance of the major bacterial groups in the rabbit caecum at the phylum level. Phyla are organised vertically from most to least prevalent (average across treatment groups), and samples are grouped horizontally by treatment (C: control; Q: dietary quercetin supplemented at 2 g/kg feed; M: male; F: female).

Figure 4: Relative abundance of the major bacterial groups (those contributing more than 1 % of total mapped reads) in the rabbit caecum at the family level. Families are organised vertically from most to least prevalent (average across treatment groups), and samples are grouped horizontally by treatment (C: control; Q: dietary quercetin supplemented at 2 g/kg feed; M: male; F: female).
The composition at the species level (Figure 5) was far more diverse than at the phylum or family levels. Some species, such as *Gemmiger formicilis* (0.72±0.09%), *Stomatobaculum longum* (0.50±0.13%) and *Ruminococcus gnavus* (0.40±0.03%) were relatively consistently present in all the samples, whereas others, such as *Bacteroides dorei* (0.50±0.18%), *Bacteroides uniformis* (0.17±0.11%) and *Bacteroides rodentium* (0.13±0.08%) were present at high levels in some samples, but barely detected in others. *Ruminococcus* (family *Ruminococcaceae*) was the most prevalent genus (2.17±0.28%), with four identified species, of which *Ruminococcus albus* (0.44±0.10%) was the 4th most prevalent overall, whereas *Ruminococcus* (proposed taxonomy, family *Lachnospiraceae*, 2.03±0.17%), was the 2nd most abundant genus, but only had only a single identified species, *R. gnavus*. In contrast, eight of the identified species belonged to the genus *Bacteroides*, despite it being only the 5th most prevalent genus identified (1.32±0.43%). *Moryella indoligenes* was the only identified species in the genus *Moryella*, and the 6th most abundant species overall (0.19±0.07%). A number of species (18 of 38) were only identified in a few of the samples, generally at very low levels, although some, such as *Bacteroides fragilis* and *Akkermansia muciniphila*, were abundant in the few samples in which they were detected.

Despite the small sample number, several of the bacterial families correlated significantly with the live performance data (Table 2). *Eubacteriaceae*, *Natranaerobiaceae*, *Peptococcaceae* and *Syntrophomonadaceae* all had strong positive Pearson’s correlations with the total weight gain, suggesting that rabbits for which these families were more abundant tended to gain more weight from weaning to 12 wk old. In contrast, rabbits with higher proportions of *Hyphomicrobiaceae* tended to grow less. Only three families correlated with the FCR, *Clostridiaceae*, *Erysipelotrichaceae* and *Haloplasmataceae*, suggesting that a higher abundance of these families coincided with a lower FCR, and thus an improvement in the efficiency of feed utilisation.

Figure 5: Relative abundance of the major bacterial species identified in the rabbit caecum. Species are organised vertically from most to least prevalent (average across treatment groups), and samples are grouped horizontally by treatment (C: control; Q: dietary quercetin supplemented at 2 g/kg feed; M: male; F: female).
There were also several correlations between bacterial families and serum hormone levels (Table 3). *Carnobacteriaceae, Coriobacteriaceae* (class *Coriobacteria*), *Streptosporangiaceae, Thermoanaerobacterales* Family III. *Incertae Sedis, Thermoanaerobacterales* Family IV. *Incertae Sedis* and *Thermosporotrichaceae* all correlated positively with serum fT3 levels, whereas *Entomoplasmataceae* and *Hyphomicrobiaceae* both had strong negative correlations. *Carnobacteriaceae*, although correlating positively with fT3 levels, had a negative correlation with fT4 levels, as did *Campylobacteraceae* and *Clostridiales Family XVI. Incertae Sedis*. In contrast, *Acidaminococcaceae*, *Peptostreptococcaceae* and *Sutterellaceae* tended to be more abundant when serum fT4 levels were higher. Only *Clostridiales Family XII. Incertae Sedis* (*r* = 0.65) correlated with serum GH levels. *Alicyclobacillaceae* correlated negatively with the serum cortisol level, while *Flavobacteriaceae, Rhizobiaceae* and *Rhodospirillaceae* correlated positively with this hormone.

Several bacterial families correlated with the caecal pH and flavonoid content. *Acetobacteraceae, Erythrobacteraceae, Microbacteriaceae, Mycoplasmataceae, Synergistaceae* and *Veillonellaceae* (order *Selenomonadales*) all tended to be less abundant in samples with higher flavonoid contents, while proportions of *Coriobacteriaceae* (class *Actinobacteria*) and *Veillonellaceae* (order *Clostridiales*) were higher. Three families correlated with the pH of the caecal content, *Clostridiales Family XI. Incertae Sedis, Desulfuromonadaceae* and *Spiroplasmataceae*, with all three being more abundant at higher pH levels. There was no apparent correlation between the pH and the caecal flavonoid content.

Diet had a very limited effect on the microbiota (Table 4), with only *Clostridiales Family XIII. Incertae Sedis* (*P* = 0.005) and *Anaerofustis* (*P* = 0.003) being more abundant in the Qrc group. Somewhat more extensive differences were found between the sexes, with this in most cases involving higher levels of the particular OTU being found in caecal samples from female rabbits. Females had higher levels of *Flavobacteriia* (*P* = 0.032), due to a higher abundance of *Flavobacteriales* and *Flavobacteriaceae*, as well as higher levels of *Desulfuromonadales* (*P* = 0.038), *Eubacteriaceae* (*P* = 0.013) and *Geobacteraceae* (*P* = 0.023).

Table 2: Significant Pearson’s correlation coefficients between the abundance of bacterial families and the live performance data and caecal content conditions of New Zealand White grower rabbits (*P*-values provided in parentheses).

<table>
<thead>
<tr>
<th>Overall abundance</th>
<th>Total weight gain</th>
<th>Average FCR</th>
<th>Caecal flavonoids (mg Q/g DM)</th>
<th>Caecal pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridiaceae</td>
<td>10.17±0.74</td>
<td>-3.67 (0.02)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eubacteriaceae</td>
<td>3.83±0.38</td>
<td>0.62 (0.03)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coriobacteriaceae (class Actinobacteria)</td>
<td>2.92±0.20</td>
<td>-</td>
<td>0.64 (0.02)</td>
<td>-</td>
</tr>
<tr>
<td>Erysipelotrichiaceae</td>
<td>2.63±0.13</td>
<td>-</td>
<td>-0.61 (0.04)</td>
<td>-</td>
</tr>
<tr>
<td>Veillonellaceae (order Selenomonadales)</td>
<td>1.21±0.12</td>
<td>-</td>
<td>-0.66 (0.02)</td>
<td>-</td>
</tr>
<tr>
<td>Peptococcaceae</td>
<td>1.11±0.08</td>
<td>0.60 (0.04)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natranoeobiaceae</td>
<td>1.08±0.19</td>
<td>0.70 (0.01)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mycoplasmataceae</td>
<td>1.01±0.19</td>
<td>-</td>
<td>-0.69 (0.01)</td>
<td>-</td>
</tr>
<tr>
<td>Hyphomicrobiaceae</td>
<td>0.74±0.09</td>
<td>-0.62 (0.03)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clostridiales Family XI. Incertae Sedis</td>
<td>0.25±0.06</td>
<td>-</td>
<td>-0.74 (<0.01)</td>
<td>-</td>
</tr>
<tr>
<td>Acetobacteriaceae</td>
<td>0.18±0.04</td>
<td>-</td>
<td>-0.59 (0.04)</td>
<td>-</td>
</tr>
<tr>
<td>Microbacteriaceae</td>
<td>0.17±0.04</td>
<td>-</td>
<td>-0.68 (0.02)</td>
<td>-</td>
</tr>
<tr>
<td>Haloplasmataceae</td>
<td>0.14±0.10</td>
<td>-0.62 (0.03)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synergistaceae</td>
<td>0.13±0.03</td>
<td>-</td>
<td>-0.62 (0.03)</td>
<td>-</td>
</tr>
<tr>
<td>Erythrobacteriaceae</td>
<td>0.10±0.02</td>
<td>-</td>
<td>-0.60 (0.04)</td>
<td>-</td>
</tr>
<tr>
<td>Desulfuromonadaceae</td>
<td>0.07±0.02</td>
<td>-</td>
<td>-0.62 (0.04)</td>
<td>-</td>
</tr>
<tr>
<td>Syntrophomonadaceae</td>
<td>0.06±0.02</td>
<td>0.63 (0.03)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spiroplasmataceae</td>
<td>0.06±0.01</td>
<td>-</td>
<td>-0.72 (<0.01)</td>
<td>-</td>
</tr>
<tr>
<td>Veillonellaceae (order Clostridiales)</td>
<td>0.05±0.01</td>
<td>-</td>
<td>0.61 (0.03)</td>
<td>-</td>
</tr>
</tbody>
</table>

No. = 12 for all correlations; Families listed from most to least abundant (abundance provided as least square mean±standard error of the mean). Total weight gain: weight gain from 5 to 12 wk of age; Average FCR: Average feed conversion ratio from 5 to 12 wk of age; mg Q/g DM: mg quercetin equivalent/gram dry matter.
Para seguir leyendo haga click aquí