FUNDAMENTOS DEL DISEÑO EN LA INGENIERÍA
ÍNDICE

CAPÍTULO 1. INTRODUCCIÓN AL DISEÑO EN LA INGENIERÍA 7
 1.1. INTRODUCCIÓN AL DISEÑO ... 9
 1.1.1. ARTESANÍA, INDUSTRIA Y DISEÑO .. 9
 1.1.2. DISEÑAR ... 11
 1.2. DISEÑO EN LA INDUSTRIA .. 15
 1.2.1. LA INDUSTRIA .. 15
 1.2.2. LOS RETOS DE LA INDUSTRIA ... 20
 1.3. DISEÑAR PRODUCTOS INDUSTRIALES .. 28
 1.3.1. TIPOS DE PRODUCTOS INDUSTRIALES 28
 1.3.2. EL CICLO DE DISEÑO DE LOS PRODUCTOS INDUSTRIALES 30
 1.3.3. EL CICLO DE LOS PRODUCTOS INDUSTRIALES 31
 1.3.4. LOS PROBLEMAS DEL DISEÑO EN LA INGENIERÍA 36
 1.4. CASO PRÁCTICO. MOVILIDAD URBANA .. 39
 1.4.1. PLANTEAMIENTO .. 39
 1.4.2. SOLUCIÓN PROPUESTA ... 41
 1.5. BIBLIOGRAFÍA ... 45

CAPÍTULO 2. TEORÍA DEL PROYECTO ... 47
 2.1. INTRODUCCIÓN ... 49
 2.2. BASES DEL CONOCIMIENTO ... 52
 2.2.1. CIENCIA DEL DISEÑO O PROYECTO 53
 2.2.2. LA TEORÍA Y LA INGENIERÍA DE SISTEMAS 54
 2.2.3. TEORÍAS DEL PROYECTO ... 54
 2.3. TEORÍA DE LAS DIMENSIONES DEL PROYECTO 58
 2.3.1. APLICACIONES DE LA TEORÍA DEL PROYECTO: ESTRATEGIAS PARA LA RESOLUCIÓN DE PROBLEMAS 62
 2.3.2. PRINCIPIOS DEL PROYECTO .. 63
 2.4. RESUMEN .. 65

CAPÍTULO 3. METODOLOGÍAS DEL PROYECTO .. 67
 3.1. INTRODUCCIÓN ... 69
 3.2. DIVERSOS ENFOQUES DEL PROCESO DE DISEÑO EN INGENIERÍA ... 70
 3.2.1. EL MODELO DE M. J. FRENCH .. 70
 3.2.2. EL DISEÑO EN INGENIERÍA SEGÚN N. CROSS 72
 3.2.3. EL DISEÑO TOTAL DE S. PUGH ... 74
 3.2.4. EL ENFOQUE SISTEMÁTICO DE G. PAHL Y W. BEITZ 78
CAPÍTULO 4. ANÁLISIS DE INFORMACIÓN Y ESPECIFICACIONES

4.1. LA BÚSQUEDA DE INFORMACIÓN ... 99
 4.1.1. INTRODUCCIÓN ... 99
 4.1.2. EL PROMOTOR ... 100
 4.1.3. LOS USUARIOS ... 101
 4.1.4. PRODUCTOS EXISTENTES EN EL MERCADO 103
 4.1.5. LEGISLACIÓN Y NORMATIVA ... 107
 4.1.6. PUBLICACIONES ESPECÍFICAS .. 108
 4.1.7. PATENTES ... 109
 4.1.8. LA EXPERIENCIA (KNOW-HOW) ... 116

4.2. LAS ESPECIFICACIONES DEL PROYECTO .. 117
 4.2.1. CÓMO DEFINIR LAS ESPECIFICACIONES DE DISEÑO DEL PROYECTO ... 118
 4.2.2. EL CONTENIDO DEunas ESPECIFICACIONES DE DISEÑO DE PRODUCTO .. 122
 4.2.3. DOCUMENTACIÓN DE LAS ESPECIFICACIONES 127
 4.2.4. LA GESTIÓN DE LAS ESPECIFICACIONES EN EL PROCESO DE DISEÑO .. 129
 4.2.5. LA TRAZABILIDAD DE LAS ESPECIFICACIONES 132

4.3. BIBLIOGRAFÍA ... 135

CAPÍTULO 5. CREATIVIDAD .. 137

5.1. INTRODUCCIÓN ... 139
5.2. LOS MECANISMOS DE LA MENTE .. 141
 5.2.1. MODELOS MENTALES ... 141
 5.2.2. RIGIDEZ Y FLEXIBILIDAD ... 142

5.3. EL PENSAMIENTO CREATIVO COMO PROCESO 145
 5.3.1. PENSAMIENTO VERTICAL FREnte A PENSAMIENTO HORIZONTAL ... 146
 5.3.2. EL PROCESO DE PENSAMIENTO CREATIVO 146

5.4. BLOQUEOS A LA CREATIVIDAD ... 148
 5.4.1. BLOQUEOS PROPIOS DEL SER HUMANO 148
 5.4.2. BLOQUEOS DE ORIGEN AFECTIVO O EMOCIONAL 149
 5.4.3. BLOQUEOS DE ORIGEN COGNITIVO ... 150
 5.4.4. BLOQUEOS DEBIDO AL ENTORNO SOCIAL 151

5.5. TÉCNICAS DE CREATIVIDAD ... 151
ÍNDICE

5.5.1. BRAINSTORMING .. 151
5.5.2. TRIZ .. 155
5.5.3. OTROS MÉTODOS ... 164
5.6. BIBLIOGRAFÍA ... 179

CAPÍTULO 6. GENERACIÓN DE SOLUCIONES .. 181

6.1. INTRODUCCIÓN ... 183
6.2. IDENTIFICACIÓN DE LAS FUNCIONES DEL PRODUCTO. EL ANÁLISIS FUNCIONAL 183
6.2.1. DESCRIPCIÓN DE LA TÉCNICA ... 183
6.2.2. EL CONCEPTO DE SISTEMA .. 184
6.2.3. ETAPAS DE DESARROLLO DEL ANÁLISIS FUNCIONAL ... 187
6.2.4. CONCLUSIONES .. 193
6.2.5. EJEMPLO 1. ASPIRADOR .. 193
6.2.6. EJEMPLO 2. CORREPAÍSILLO .. 196
6.3. BÚSQUEDA DE SOLUCIONES POR FUNCIONES. LOS CUADROS MORFOLÓGICOS 197
6.3.1. DESCRIPCIÓN DE LA TÉCNICA ... 197
6.3.2. ETAPAS DE DESARROLLO DE LOS CUADROS MORFOLÓGICOS 197
6.3.3. EJEMPLO 1. ASPIRADOR .. 199
6.3.4. EJEMPLO 2. MAQUINILLA DE AFEITAR ... 200

CAPÍTULO 7. EVALUACIÓN DE ALTERNATIVAS .. 203

7.1. INTRODUCCIÓN ... 205
7.2. EVALUACIÓN ECONÓMICA. ESTIMACIÓN DE COSTES ... 206
7.2.1. ESTIMACIÓN DE COSTES EN LAS DISTINTAS FASES DE PROYECTO .. 206
7.2.2. CLASES DE ESTIMACIONES .. 208
7.2.3. MÉTODOS DE ESTIMACIÓN DE COSTES ... 209
7.3. EVALUACIÓN MULTICRITERIO ... 215
7.3.1. CONCEPTOS BÁSICOS SOBRE DECISIÓN .. 215
7.3.2. CLASIFICACIÓN DE LOS PROBLEMAS DE DECISIÓN .. 217
7.3.3. METODOLOGÍA DE TOMA DE DECISIÓN MULTICRITERIO ... 218
7.3.4. MÉTODOS DE DECISIÓN MULTICRITERIO DISCRETO. SUMA PONDERADA 224
7.3.5. EJEMPLO DE APLICACIÓN ... 225
7.4. EL FACTOR DE RIESGO EN LA EVALUACIÓN DE PROYECTO .. 226
7.4.1. CRITERIOS DE DECISIÓN BAJO RIESGO E INCERTIDUMBRE .. 227
7.4.2. EJEMPLO DE APLICACIÓN ... 231
7.5. MODELO DE EVALUACIÓN COSTE/BENEFICIO ... 234
7.5.1. CASO DE ESTUDIO .. 235
7.6. BIBLIOGRAFÍA ... 240
CAPÍTULO 8. DISEÑO PARA LA CALIDAD ... 241
 8.1. INTRODUCCIÓN .. 243
 8.2. DESPLIEGUE DE LA FUNCIÓN DE CALIDAD (QUALITY FUNCTION DEPLOYMENT O QFD) .. 244
 8.3. LA CASA DE LA CALIDAD: DESARROLLO Y APLICACIÓN 245
 8.3.1. ESTUDIO DEL USUARIO .. 246
 8.3.2. ESTUDIO DEL MERCADO .. 254
 8.3.3. CÁLCULO DE LOS PARÁMETROS TÉCNICOS 257
 8.4. USO DE LOS RESULTADOS: ESPECIFICACIONES TÉCNICAS DE DISEÑO ... 265
 8.5. BIBLIOGRAFÍA ... 267

CAPÍTULO 9. DISEÑO PARA EL MEDIO AMBIENTE 269
 9.1. NUESTRA HUELLA EN EL PLANETA Y EL DESARROLLO SOSTENIBLE ... 271
 9.2. EL CONCEPTO DE CICLO DE VIDA .. 275
 9.3. LA MEDIDA DE LOS IMPACTOS AMBIENTALES 278
 9.3.1. MATRIZ MET .. 282
 9.3.2. ANÁLISIS DE CICLO DE VIDA (ACV) 284
 9.3.3. ECOINDICADORES .. 286
 9.4. DE LA TEORÍA A LA PRÁCTICA: CÓMO SE DISEÑA PARA EL MEDIO AMBIENTE .. 288
 9.4.1. CUÁNDO CONSIDERAR LOS IMPACTOS AMBIENTALES EN EL PROCESO DE DISEÑO .. 288
 9.4.2. ESTRATEGIAS DE ECODISEÑO .. 289
 9.5. UN EJEMPLO DE ECODISEÑO MEDIANTE ECOINDICADORES ... 291
 9.5.1. OBTENCIÓN DE LAS MATERIAS PRIMAS 295
 9.5.2. FABRICACIÓN DE LAS PIEZAS .. 297
 9.5.3. TRANSPORTE DE LAS PIEZAS .. 299
 9.5.4. MONTAJE .. 299
 9.5.5. TRANSPORTE DE LAS PIEZAS HASTA LOS PUNTOS DE VENTA Y DE CONSUMO .. 300
 9.5.6. USO DE LA LÁMPARA .. 302
 9.5.7. RETIRO DE LA LÁMPARA Y ENTRADA EN EL CIRCUITO DE GESTIÓN DE RESIDUOS .. 305
 9.5.8. PUESTA EN COMÚN .. 306
 9.6. BIBLIOGRAFÍA ... 311

CAPÍTULO 10. GESTIÓN DEL VALOR ... 313
 10.1. INTRODUCCIÓN ... 315
 10.1.1. ANTECEDENTES HISTÓRICOS .. 315
ÍNDICE

10.1.2. CONCEPTO DE VALOR .. 315
10.1.3. VALOR Y FUNCIONALIDAD ... 317

10.2. GESTIÓN DEL VALOR ... 318
10.2.1. POLÍTICAS Y ESTRATEGIAS PARA MEJORAR EL VALOR 319
10.2.2. GESTIÓN DE RECURSOS HUMANOS PARA MEJORAR EL VALOR ... 321
10.2.3. GESTIÓN DE LA INFLUENCIA DEL ENTORNO DEL PROYECTO PARA MEJORAR EL VALOR .. 322
10.2.4. HERRAMIENTAS DE DISEÑO PARA MEJORAR EL VALOR 323

10.3. ANÁLISIS DE VALOR ... 325
10.3.1. ANÁLISIS DE VALOR EN LA INGENIERÍA DEL VALOR 325
10.3.2. ANÁLISIS DE LAS NECESIDADES DE LOS USUARIOS.
MATRIZ CLIENTES-NECESIDADES .. 325
10.3.3. ANÁLISIS DE LAS FUNCIONES DEL PRODUCTO. MATRIZ NECESIDADES-FUNCIONES .. 329
10.3.4. ANÁLISIS DE LOS SUBSISTEMAS Y COMPONENTES DEL
PRODUCTO. MATRIZ FUNCIONES-SISTEMAS-COSTES 330
10.3.5. RESULTADOS DEL ANÁLISIS DE VALOR 333

10.4. PROPUESTAS DE MEJORA ... 336
10.5. CASO PRÁCTICO ... 336
10.5.1. INTRODUCCIÓN AL CASO PRÁCTICO 336
10.5.2. ENUNCIADO DEL PROBLEMA ... 338
10.5.3. ANÁLISIS DE LOS COSTES DE LOS SISTEMAS DEL
PRODUCTO .. 338
10.5.4. SOLUCIÓN DEL PROBLEMA .. 340

10.6. BIBLIOGRAFÍA ... 342

CAPÍTULO 11. GESTIÓN DE EQUIPOS ... 343

11.1. INTRODUCCIÓN ... 345
11.1.1. ÁREAS DE LA DIRECCIÓN Y GESTIÓN DE PROYECTOS 345

11.2. FUNCIONES Y RECURSOS DE AUTORIDAD DEL DIRECTOR DE PROYECTOS ... 348
11.2.1. FUNCIONES DE LA DIRECCIÓN DEL EQUIPO 348
11.2.2. PODER Y AUTORIDAD ... 349
11.2.3. factores de apoyo al director del proyecto 351

11.3. EL PROYECTO EN LA SOCIEDAD DEL CONOCIMIENTO 352
11.3.1. UN NUEVO PARADIGMA: EL CONOCIMIENTO COMO ACTIVO PRINCIPAL DEL PROYECTO .. 352
11.3.2. ¿QUÉ CONOCIMIENTO? .. 354

11.4. LA DINÁMICA DE TRABAJO EN EQUIPO 356
11.4.1. VENTAJAS Y DESVENTAJAS DEL TRABAJO EN EQUIPO 357
11.4.2. EL PROCESO DE FORMACIÓN DE UN EQUIPO 358
11.4.3. CARACTERÍSTICAS DE LOS EQUIPOS ALTAMENTE EFECTIVOS.... 359
11.4.4. LOS Roles GRUPELES... 360
11.4.5. EL PAPEL DE LOS ROLES EN EL PROCESO DE RESOLUCIÓN
 DE PROBLEMAS... 362
11.5. EL LIDERAZGO EN EL PROYECTO ... 364
 11.5.1. DEFINICIÓN DE LIDERAZGO... 364
 11.5.2. DIFERENTES ESCUELAS PARA ENTENDER EL LIDERAZGO ... 365
 11.5.3. EL LIDERAZGO SITUACIONAL.. 366
11.7. CONCLUSIONES .. 372
11.8. BIBLIOGRAFÍA .. 372
CAPÍTULO 1
INTRODUCCIÓN AL DISEÑO EN LA INGENIERÍA

1.1. INTRODUCCIÓN AL DISEÑO ... 9
 1.1.1. ARTEsanía, INDUSTRIA Y DISEÑO ... 9
 1.1.2. DISEÑAR .. 11
 1.1.2.1. Concepto de diseño ... 12
 1.1.2.2. Ciencia del diseño ... 13
 1.2. DISEÑO EN LA INDUSTRIA ... 15
 1.2.1. LA INDUSTRIA .. 15
 1.2.1.1. Los sistemas productivos .. 15
 1.2.1.2. La función de ingeniería .. 16
 1.2.1.3. Los Grupos de Interés .. 18
 1.2.1.4. La importancia del cliente ... 20
 1.2.2. LOS RETOS DE LA INDUSTRIA ... 20
 1.2.2.1. Las demandas de la industria 20
 1.2.2.2. El reto de la sostenibilidad 23
 1.3. DISEÑAR PRODUCTOS INDUSTRIALES ... 28
 1.3.1. TIPOS DE PRODUCTOS INDUSTRIALES 28
 1.3.2. EL CICLO DE DISEÑO DE LOS PRODUCTOS INDUSTRIALES 30
 1.3.3. EL CICLO DE LOS PRODUCTOS INDUSTRIALES 31
 1.3.3.1. Ciclo de vida económico de un producto 32
 1.3.3.2. Ciclo de vida físico de un producto 35
 1.3.4. LOS PROBLEMAS DEL DISEÑO EN LA INGENIERÍA 36
 1.3.4.1. Problema proyectual y problema tecnológico 36
 1.3.4.2. La metodología de diseño .. 39
 1.4. CASO PRÁCTICO. MOVILIDAD URBANA 39
 1.4.1. PLANTEAMIENTO ... 39
 1.4.2. SOLUCIÓN PROPUESTA ... 41
 1.5. BIBLIOGRAFÍA ... 45
1.1. INTRODUCCIÓN AL DISEÑO

1.1.1. ARTESANÍA, INDUSTRIA Y DISEÑO

En las definiciones de civilización se suelen incluir, además de las ideas y costumbres que caracterizan a los pueblos, sus artes, ciencias y objetos artificiales. *Artefactos* se refiere a lo hecho o creado por el ser humano, como contraste con lo que se puede observar y encontrar en el resto de la naturaleza (*Natural*). Es decir, es inherente al desarrollo humano y la civilización la capacidad para crear conocimiento, objetos y organizaciones artificiales.

En la creación de lo artificial el ser humano primero fue artista y artesano. El objetivo principal de las cosas que creaba era satisfacer necesidades propias o, como mucho, de su clan. Las pinturas, objetos y técnicas exitosas se copiaban principalmente por tradición oral. Había diseño en lo que hacían pero no conciencia específica de ello. Con el desarrollo de la civilización y las ciudades e imperios surgen los primeros diseñadores pero todavía no con ese estatus. La complejidad social permite que se establezcan los oficios y que proliferen y compliquen las necesidades en paralelo con la demanda de objetos y servicios. Las ciudades concentran el intercambio de recursos naturales e ideas y, en ese contexto, se consolident los oficios de arquitecto, inventor y constructor de máquinas, constructor de barcos, los oficios gremiales, etc. De esta época, previa a la era Cristiana, son los primeros diseños tal y como hoy se entienden, con sus dibujos y planos, organización de instrucciones de fabricación, maquetas, etc.

![Figura 1.1. Prensa de tornillo según una descripción (diseño) de Herón de Alejandría (siglo I a. C)](image)

Fuente: Gómez-Senent et al., 2007
También es paralela a la civilización la aparición de la industria. *Industria* es la habilidad y el conjunto de actividades necesarias para transformar los productos (naturales o no) y obtener otros productos o servicios. Es *muy industrioso* quien trabaja mucho, sabe hacer las cosas bien y en gran cantidad. Así, con el aumento de la demanda y el desarrollo del libre comercio, la industria instauró la estrategia de hacer mucho más de lo que se necesita para el autoconsumo con el fin de intercambiarlo por otros productos y servicios. De esta forma la industria se fue diferenciando de la artesanía y la burguesía fue sustituyendo a los gremios como agente social para la producción. La sustitución nunca ha sido completa, el arte y la artesanía siguen teniendo su demanda y conviven en el mercado los productos industriales y artesanos (ver figura 1.2.).

![Figura 1.2. Dos productos comerciales actuales de vidrio, artesano el de a izquierda, industrial el de la derecha](image)

Fuente: Elaboración propia

Sin duda el despegue definitivo de la industria como sector económico, social e incluso cultural, llega con la Revolución Industrial (RI) y el triunfo del Capitalismo. La RI se debe a los efectos de fenómenos como la colonización y la segunda revolución agraria pero también y en buena parte al diseño, concretamente al diseño y difusión de la máquina de vapor. En efecto, la tecnología de vapor permite diseñar máquinas que pueden hacer su función casi en cualquier rincón del planeta. Estas máquinas ya no tienen dependencia de la energía de la sangre (humana y de animales) o de los recursos naturales (corrientes acuáticas, vientos, sol, etc.). Así, el ser humano multiplica su capacidad de satisfacer necesidades donde quiera que esté, ya no hay recurso inaccesible, pueblo aislado, distancia insalvable o producto escaso. El descubrimiento del nuevo mundo con la consiguiente segunda revolución agraria (la llegada del tomate, el maíz, la patata, etc.) y la RI son, en efecto revoluciones del desarrollo humano como se puede observar en la gráfica de la figura 1.3.
La industria no ha dejado de crecer desde que las máquinas fueron distinguiendo las nuevas técnicas de producción de la artesanía. A este desarrollo han contribuido otros factores igualmente importantes como, por citar algunos, el libre mercado, el sistema de patentes, o la colonización que permitió acumular capital al inicio de la industrialización imponiendo unos precios muy bajos para las materias primas. La industria se erige en uno de los sectores fundamentales del bienestar de un país hasta el punto que se suele distinguir los países económicamente desarrollados del resto denominándolos países industrializados.

El diseño ha estado presente siempre en la civilización y ha evolucionado en paralelo a la industria; la historia de la industria es en buena parte la historia del diseño, y viceversa.

1.1.2. DISEÑAR

Hoy la Industria es el conjunto de los conocimientos, las herramientas, las infraestructuras, las instalaciones, los productos, las organizaciones y el modelo de intercambio de recursos que permiten producir en grandes cantidades bienes y servicios útiles para usos civiles (o militares, desafortunadamente). Todo este colossal sector ha sido proyectado y ejecutado, y es explotado, mantenido y retirado por personas. Por tanto, la metodología de proyecto en industria, la forma en que las personas diseñan los bienes y servicios, es una de las habilidades básicas de los técnicos de la industria. A continuación se va a reflexionar sobre el significado actual del término diseño en la industria.
1.1.2.1. Concepto de diseño

Para la ingeniería industrial diseñar tiene un significado muy semejante a proyectar. Esto no es así en todos las disciplinas. Como argumentan Alcaide et al. en el primer volumen de su libro Diseño de Producto (2001), se asocia generalmente diseño a:

- Trabajo sobre estética, mejora de la apariencia de los objetos de uso cotidiano.
- Mejora de la riqueza semántica del producto.
- Dibujo para representar o comunicar algo.
- Disciplina que relaciona los objetos con cualquier aspecto del entorno humano.

De estos conceptos y connotaciones se podría deducir que el diseñador es un especialista que contribuye al desarrollo del producto en sus aspectos formales. Así, el diseñador ayuda a la toma de decisiones sobre: materiales, texturas, colores, geometrías, etc. desde la disciplina de la estética, la semántica o la ergonomía, pero no contribuye desde la disciplina del análisis de mercados, el análisis económico, la mecánica, la electrónica, etc.

Sin embargo no es así en el campo de la ingeniería, los diseñadores participan en la determinación de la competencia en el mercado, definen las necesidades de los usuarios, deciden qué funciones realizará el nuevo producto, consultan y aplican normas, realizan modelos complejos por ordenador, calculan los parámetros más relevantes, ensayan con prototipos y maquetas, deciden la apariencia, mejoran la ergonomía, evalúan costes, etc. etc. Por tanto, su trabajo, además de los aspectos formales del producto, incluye los aspectos funcionales, técnicos, legales y económicos (y últimamente los medioambientales).

Si se analizan los significados y connotaciones del término Proyectar, se obtienen, entre otros:

- Definir objetivos deseables y plazos, trazar planes para conseguirlo.
- Inventar, dibujar y establecer instrucciones para hacer realidad un objeto o servicio.
- Hacer preparativos, determinar los recursos necesarios y asignarlos a tareas para conseguir algo.
- Documentar mediante planos, procedimientos, etc. las tareas para conseguir un objetivo.

Estos significados están más cerca de la actividad real de un diseñador de productos industriales. Por tanto, diseñar y proyectar productos industriales son sinónimos para la ingeniería industrial, y así se considera en este libro. Análogamente, diseñador, proyectista e ingeniero de producto son términos sinónimos y se usarán indistintamente. Además, por diseño se puede hacer referencia al proceso de diseño y al resultado del mismo. Por tanto, cuando sea necesario se distinguirá
entre proceso de diseño (o de proyecto), diseño (o proyecto) y objeto del diseño (u objeto del proyecto) como se ilustra en la figura 1-4.

![Diagrama de diseño]

Figura 1.4. Tres acepciones del término diseño o proyecto

Fuente: Elaboración propia

Cuando se quiera referir a otro tipo de diseño, distinto al desarrollo de productos industriales, se usarán calificativos que aclaren a qué disciplina o actividad económica se alude. Así, por ejemplo, se hablará de diseño industrial para referirse a los aspectos formales de los productos industriales, diseño gráfico para el diseño de imágenes y textos para la comunicación o la publicidad, diseño de producción para el diseño de las actividades productivas, diseño de moda para el diseño de productos y complementos del vestido, diseño artístico para el diseño más libre e innovador de aspectos formales, etc.

1.1.2.2. Ciencia del diseño

Dada la importancia de la creación de lo artificial para el desarrollo humano, desde los orígenes de la civilización ha habido pensadores que han estudiado el proceso de diseño (este fenómeno se explica con más detalle en el capítulo siguiente). Estos análisis y propuestas normalmente han estado incluidos en tratados generalistas sobre construcción, mecánica, náutica, etc. y, como mucho, merecieron un capítulo específico. No será hasta la Revolución Industrial, salvo excepciones bien conocidas como Vitruvio, Leonardo da Vinci, Galileo y otros, que la ciencia del diseño sea objeto específico de estudio y publicaciones.

Desde entonces numerosos autores del campo de la ingeniería, la arquitectura, la psicología o la microeconomía han realizado y publicado obras sobre el diseño, y en particular sobre el diseño de productos industriales. Estos trabajos recibieron forma de manual, tratado teórico, colección de ejemplos y recomendaciones, etc.
han contribuido en conjunto a elaborar una disciplina compleja con un amplio espectro de actividades y aplicaciones. Esta fructífera producción ha observado un fuerte crecimiento desde los años 50 y 60 del siglo XX, completado con la aparición y difusión de normas específicas de diseño publicadas en los países industrializados.

No es objeto de este capítulo revisar los mejores tratados de esta disciplina porque ya se hace en el capítulo siguiente. Sin embargo, sí interesa adelantar algunas de las definiciones y reflexiones de los principales autores sobre el diseño de productos industriales (Engineering Design en términos anglosajones). Esta colección de características del diseño, sacada de las obras de, entre otros, Gómez-Senent, Alcaide et al., Pahl y Beitz, permite ilustrar la complejidad del diseño. Además servirá para argumentar la necesidad de metodologías y herramientas de diseño que permitan reducir el riesgo y gestionar la incertidumbre inherente del diseño sin menoscabar su potencial para crear algo nuevo. Todas las citas que se listan a continuación aportan conceptos sobre el diseño, o matices sobre esos conceptos. Así, para los autores de la disciplina, diseñar…:

1. ... es la elaboración de una decisión, de cara a la incertidumbre con grandes penalizaciones para el error (M. Asimow).
2. ... es una actividad creativa que supone la consecución de algo nuevo y útil sin existencia previa (Reswick).
3. ... es dar respuesta a un conjunto de problemas multidisciplinares relacionados entre sí (Gómez-Senent).
4. ... es reflexionar y describir una estructura que potencialmente incorpora unas características deseadas (Hubka y Eder).
5. ... afecta a casi todas las áreas de la vida humana (Pahl y Beitz).
6. ... utiliza las leyes de la ciencia y se basa en una experiencia especial (Pahl y Beitz).
7. ... implica una continua relación entre lo que se quiere conseguir y cómo se quiere conseguirlo, apareciendo siempre el objetivo del diseño en un dominio funcional, y la solución física a ese objetivo en un dominio físico. La actividad de diseño supone vincular estos dos dominios a cualquier nivel jerárquico del proceso de diseño (N.P. Suh).
8. ... se entiende, en términos de proceso, como la transformación de información desde la condición de necesidades, demandas, requerimientos y restricciones hacia la descripción de una estructura capaz de satisfacer esas demandas (Hubka y Eder).
9. ... es una actividad sistemática que se inicia con la identificación de las necesidades del mercado y culmina con la venta del producto para satisfacer dicha necesidad (S. Pugh).
10. ... se entiende como concebir la idea de algún artefacto o sistema y expresarla de forma que se pueda fabricar (Roozenburg y Eekels).
11. … es crear un modelo que se usa como patrón para reproducir un objeto o servicio tantas veces como sea necesario (Gómez-Senent).

12. … es una actividad que armoniza producto, proceso, personal y organización (S. Pugh).

1.2. DISEÑO EN LA INDUSTRIA

1.2.1. LA INDUSTRIA

1.2.1.1. Los sistemas productivos

Un producto industrial se realiza en un sistema productivo (SP), una industria. Los SP realizan una serie de funciones o actividades para llevar a cabo su producción. Esta variedad de funciones y la importancia de cada una hacen que los SP se organicen en torno a ellas. La siguiente figura muestra estas funciones, algunos de los flujos entre ellas (materiales y/o información) y las relaciones con clientes y proveedores del SP.

![Figura 1.5. Funciones de un sistema productivo](image)

Fuente: Adaptada de Capuz, 1999
1.2.1.2. La función de ingeniería

De todas las funciones de un SP una de las que están recibiendo cada vez más atención, y la que ocupa a este libro, es la de ingeniería, encargada de la innovación, diseño y adaptación del producto al SP. La función de ingeniería tiene como objeto principal dar respuesta a los problemas que plantean las demandas de los diferentes clientes de la empresa. Para ello innovan y diseñan los productos y servicios de la empresa, así como sus procesos productivos. Estas demandas le llegan a través de la función de ventas, que tiene el contacto directo con los clientes, de la función de producción y de la función de dirección y gestión. Pero no basta con satisfacer estas demandas, además, se debe tener en cuenta las demandas y condiciones que imponen todos los agentes interesados en la industria: proveedores, administración pública, competencia, medios de comunicación, etc. Finalmente, la función de ingeniería debe conseguir estas respuestas integrando también las necesidades del resto de funciones de la empresa como compras, finanzas, distribución, almacén o recursos humanos. El producto deberá ser producible de forma competitiva en la empresa. Así, el objeto de la función de ingeniería es dar respuesta a un conjunto amplio y complejo de demandas, priorizando las más importantes pero sin descuidar cumplir unos mínimos para todas.

Un producto o servicio industrial se ha ideado para cubrir un conjunto de demandas. Una demanda es la expresión del deseo de satisfacer una necesidad y la voluntad de esforzarse para ello dando a cambio moneda, otro producto o servicio, trabajo, talento, etc. No se debe confundir necesidad y demanda, hay necesidades que no se sabe concretar o expresar y no llegan a ser demandas. Y puede haber demandas artificiales que no tienen una necesidad real detrás o malinterpretan una necesidad existente.

La función de ingeniería debe saber trabajar con esta dicotomía. Para ello se deben identificar las necesidades y demandas, establecer canales de comunicación y elaborar Especificaciones de Diseño que las expliquen y sirvan de objetivos para el diseñador. Este es el proceso nuclear del diseño, y por extensión de la función de ingeniería, y a esto se le dedican otros apartados de este capítulo y otros capítulos del libro como el 4, 7, 8 y 9.

La siguiente figura muestra la importancia de la función de diseño en las características finales del producto, por ejemplo los costes. Las características finales del producto son trascendentales en su éxito ya que son la forma con que el producto satisface las demandas y necesidades. Y el éxito del producto es fundamental en el éxito de la industria.

La figura muestra dos curvas, la de Costes Comprometidos y la de Costes Causados para un producto industrial complejo como es un automóvil. La primera hace referencia a que los costes se comprometen cuando se toman las decisiones en el ciclo de vida del producto. Así, elegir un material u otro en la etapa de diseño comprometerá que el producto tenga un coste u otro. La segunda curva hace referencia a los costes que efectivamente repercuten en el precio final del producto,
por ejemplo la compra del material, el coste de la mano de obra, el coste del diseño, el coste de la distribución, etc.

![Gráfica de costes](image)

DEPARTAMENTOS DE LA EMPRESA

Figura 1.6. Funciones de un sistema productivo

Fuente: Adaptada de Capuz, 1999

Como se puede observar, el coste queda comprometido en su mayoría en el diseño del producto. Negociando bien se puede reducir algo el coste de las compras, por eso hay un cierto margen reflejado en la curva, e igualmente puede ocurrir en la producción y el almacenaje y distribución, pero donde realmente se toman las decisiones que repercuten en el coste final del producto es en la etapa de diseño. Sin embargo, la etapa de diseño no suele ser cara en los costes del producto y sí lo son los materiales, los costes de producción, etc. Por eso, las industrias destinan mucho esfuerzo a reducir esos costes cuando, según esta gráfica, sería más recomendable destinar el esfuerzo a mejorar el diseño tomando decisiones que comprometan menores costes.
Análogamente ocurre con todas las características del producto y esta gráfica es semejante a la que se obtendría de analizar la calidad, la seguridad, el impacto ambiental, etc. En los siguientes capítulos se discute con más detalle esta influencia del diseño en el producto final. Con esta ilustración se pretende demostrar que la función de ingeniería, que incluye innovación y diseño, es básica en el funcionamiento del sistema productivo. Sin embargo, las restantes funciones del SP son importantes y los productos deben adaptarse a las condiciones técnicas, económicas, humanas, etc. del SP que los produce.

1.2.1.3. Los Grupos de Interés

Es interesante ahora reflexionar sobre los clientes de una industria. La industria moderna es una compleja interacción de muy diversos agentes, cada uno con sus propios intereses. La siguiente tabla ilustra de forma resumida la disparidad de intereses de los grupos a favor de una determinada industria (en algunos textos se recomienda denominar clientes a todos ellos):

Tabla 1.1. Grupos de interés de una industria

<table>
<thead>
<tr>
<th>Grupo de interés</th>
<th>Objetivo</th>
<th>Medios</th>
</tr>
</thead>
</table>

Fuente: Elaboración propia

¹ La industria es en muchas regiones el principal motor de innovación y desarrollo.
Los legítimos intereses de los agentes listados en la tabla a menudo colisionan entre sí. É igualmente pueden colisionar con los también legítimos intereses de otros agentes que no desean los impactos negativos de la industria: la degradación ambiental, la desaparición de los sistemas productivos artesanales, los accidentes laborales, etc. De la continua negociación en cada caso entre los agentes implicados (o del indeseable conflicto) surge la industria como se conoce hoy.

Por tanto, son numerosos y diversos los grupos de interés de una industria (comúnmente referidos por el término anglosajón stakeholders). De hecho, a menudo no se consideran las necesidades de todos ellos y esto es fuente de descontento para ciertos stakeholders y de dificultades para la organización. En la literatura especializada se han encontrado listas de chequeo con más de 100 posibles grupos de interés. Indudablemente no se puede producir para contentar a todos en todas sus demandas (probablemente algunas incluso no sean legítimas), pero sí se debe considerar a todos en una primera aproximación y descartarlos por comparación con otros stakeholders, en un proceso de priorización. Seguidamente se citan algunos de los grupos de interés más frecuentes en industria.

Grupos de Interés internos:
- Personal del sistema productivo.
- Accionistas.
- Sindicatos internos.

Grupos de interés externos:
- Empresas que apoyan o asesoran al sistema productivo (finanzas, mercados, leyes, seguridad, limpieza, servicios técnicos, etc.).
- Clientes directos.
- Usuarios finales si se producen subsistemas o componentes\(^2\).
- Competencia.
- Proveedores.
- Distribuidores.
- Consultorías de certificación, acreditación, homologación, etc.
- Sindicatos generalistas.
- Administración local, regional, etc.
- Asociaciones de consumidores, ecologistas, etc.
- Asociaciones de vecinos.
- Medios de comunicación.

\(^2\) Las empresas que fabrican componentes o servicios que forman parte de otros productos finales, los que llegan al usuario final, deben tener en cuenta las demandas de sus clientes pero también las de los usuarios finales (clientes indirectos) que compran a sus clientes.
Cada uno de estos grupos de interés tienen necesidades diferentes, como lo serán sus demandas, y puede suponer un problema insoluble realizar productos para la satisfacción de todos. Sin embargo hay una clave que no se debe olvidar, son numerosos los grupos de interés que prefieren que la industria siga produciendo. En efecto, tienen interés en ello ya sea por que compran al SP, le venden, recaudan sus impuestos, obtienen salarios, etc. Por tanto, en la mayoría de las ocasiones será posible negociar soluciones de compromiso que mejoren la posición y al SP en su conjunto.

1.2.1.4. La importancia del cliente

Obviamente, de todos los grupos de interés, el que debe recibir prioridad es el de los clientes directos. En este libro se dedican diversos capítulos a las técnicas para averiguar y convertir en especificaciones de diseño la denominada Voz del Cliente (ver capítulos 4 y 8 en particular). En este análisis de las demandas de los clientes se incluyen actividades para tratar de averiguar así mismo sus necesidades y expresarlas en forma de demandas, explicándolas y evaluando su importancia.

Es importante que la industria, y en ella el diseñador, entiendan que los productos y servicios se adquieren por el valor que suponen para el cliente. Los esfuerzos de innovación y diseño deben encaminarse a aumentar ese valor, satisfaciendo al cliente y haciéndole fiel a la industria (ver capítulo 10).

1.2.2. LOS RETOS DE LA INDUSTRIA

1.2.2.1. Las demandas de la industria

Las demandas a las que se enfrentan las industrias evolucionan lógicamente de acuerdo con la evolución de la sociedad y los mercados. Hoy la industria generalmente se enfrenta a mercados saturados en los que diferenciarse de la competencia es cada vez más difícil. Revisando los últimos 50 años, se puede generalizar y afirmar que el reto de la industria de los años 60 era producir más para abastecer los mercados. Con el inicio de los años 70 los mercados se llenaron y los industriales tuvieron que reducir sus costes de producción para seguir compitiendo. En los años 80 surgieron las estrategias de calidad para tratar de reducir costes aún más, y para ofertar mejores productos, más satisfactorios. También se implantó definitivamente la cultura de la innovación y de la rapidez para sacar el nuevo producto primero al mercado, primacía que otorgase el liderazgo. Sin embargo, esto sólo ya no basta, hoy los mercados están tan saturados de productos de tanta calidad que la forma de competir y permanecer en ellos es ofertar productos muy variados adaptados a las necesidades de cada cliente particular. Hay que apostar por la flexibilidad y el servicio personalizado.
Se imponen las grandes superficies de venta, con amplios catálogos de producto, servicio pre y post-venta y diseños que permitan diversas configuraciones de un mismo producto. Con todo, la creciente sensibilidad hacia el ambiente y los problemas sociales está llevando a que los consumidores también reclamen a las industrias que minimicen sus impactos ambientales y sociales (ver figura 1-7). El nuevo reto supera el diseño de productos equilibrados entre coste, calidad y plazo. Ahora se debe conseguir un nuevo equilibrio: ofertar soluciones que además resulten específicas para cada consumidor y de nulo impacto ambiental y social.

![Diagrama de Tendencias Estratégicas](image)

Figura 1.7. Evolución de los retos de la industria
Fuente: Adaptada de Capuz, 1999

Por otro lado, la industria está globalizada. Esto significa, en primer lugar, que puede comprar y vender en casi cualquier punto del planeta pero, en segundo lugar, que cualquiera puede ser competencia, aunque no produzca con las mismas reglas (como resultado de los acuerdos internacionales de libre comercio). También significa que la industria se puede ver afectada por variables muy lejos de su alcance: la economía internacional, conflictos políticos, conflictos por los recursos naturales, campañas mediáticas, etc. O también significa que puede aprender y contratar talento en cualquier sitio del planeta.

Este imponente desarrollo de la complejidad y la cantidad de la producción industrial, paralelo a la mayor complejidad y calidad de sus productos, ha supuesto una enorme demanda de diseño de productos industriales. Este diseño al principio lo realizaban especialistas de otras disciplinas. Hoy, cada vez más, es realizado por especialistas en ingeniería de producto. Actualmente, el diseño es motor de innovación industrial y uno de los instrumentos de competitividad más importantes.
Se puede afirmar que el *cerebro* de las industrias se comparte ahora entre la función de dirección y función de ingeniería. Incluso los sectores industriales más atomizados y conservadores (entre otras razones por seguir sacando rendimiento de prácticas artesanales: sector del mueble, textil, cerámica, alimentación, etc.) han desarrollado la función de diseño en sus organizaciones, o la han subcontra-tado, como estrategia para seguir siendo competitivos.

La siguiente lista muestra los retos inmediatos de la industria (y del diseñador en ella). En conjunto puede parecer un trabajo insuperable, pero en la práctica, según el sector industrial, unos son más urgentes e importantes que otros. Las industrias que mejor inoven y adapten sus productos a estos retos seguirán en el mercado, las otras se estancarán e irán desapareciendo. De acuerdo con las diversas fuentes consultadas, los nuevos retos de la industria actual se listan a continuación:

La Calidad (siempre se renueva como reto para la industria):
- Mejores funciones.
- Mayor número de funciones.
- Mayor usabilidad.
- Mayor flexibilidad y adaptación personal.
- Mayor duración.
- Mayor fiabilidad.
- Mayor seguridad.

La ampliación de la gama ofertada, personalizando el producto o servicio, distinguiendo:
- Por culturas y gustos.
- Hombre de mujer.
- Joven de maduro.
- Más calidad o más económico.

La venta por internet:
- Reforzando la seguridad de las transacciones.
- Aumentando la presencia en la red.
- Mejorando la logística de recogida, distribución y devolución.
- Mejorando la imagen de los productos.

La globalización, en el mercado global hay:
- Clientes.
- Proveedores.
- Distribuidores.
- Socios industriales.
- Accionistas y capital.
- Mano de obra.
- Talento y conocimiento.

El servicio post-venta:
- Ampliando la garantía.
- Mejorando la actualización.
- Mejorando la reparabilidad.
- Mejorando la logística de recogida, distribución y devolución.
- Induyendo sistemas de auto-diagnóstico en los productos.

La imagen corporativa:
- Creación de marca.
- Generación de confianza.
- Fidelización de clientes y satisfacción de stakeholders.
- Evitar boicots o cambios de preferencia.
- Captación y retención de talento.
- Disminución de la presión de las administraciones.
La sostenibilidad:
- Menor impacto ambiental. Menor consumo de recursos naturales y menor emisión de contaminantes a lo largo de su ciclo de vida.
- Extracción y elaboración de materias primas.
- Producción.
- Distribución.
- Uso y mantenimiento.
- Retiro al final de la vida útil.

Mejor contribución social:
- Inclusión de ancianos y discapacitados
- Igualdad de oportunidades, sin distinción por sexo, edad, raza, política, religión, etc.
- Mecenazgo cultural, deportivo, artístico, etc.
- Otros retos específicos de cada sector industrial.

Mayor seguridad:
- Menos accidentes.
- Menos enfermedades laborales.

1.2.2.2. El reto de la sostenibilidad

De los diferentes retos que enfrenta la industria, sin duda uno de los más complicados, importantes y urgentes es la contribución al desarrollo sostenible. En las cumbres mundiales de Río de Janeiro (Brasil) en 1992 y en Johannesburgo (Sudáfrica) en 2002 la gran mayoría de los estados mundiales, y en particular todos los industrializados, ratificaron o llegaron a acuerdos para minimizar la presión ambiental de sus economías sobre el planeta. De este compromiso se han derivado la profusión de directivas y leyes ambientales actuales, las campañas de protección del ambiente, los gravámenes a las actividades contaminantes, etc. Actualmente, los diseñadores de las medianas y grandes empresas deben diseñar para cumplir especificaciones relacionadas con el medio ambiente, cuando no es el medio ambiente la nueva apuesta estratégica para diferenciar el producto. Disminuir la presión ambiental sobre el planeta es el primero de los retos relacionados con la sostenibilidad.

La presión al planeta se concreta en el consumo de recursos naturales y en la emisión de sustancias contaminantes. Los recursos naturales renovables deben ser explotados a una tasa menor que la que necesita el planeta para renovarlos, de lo contrario se sobreexplotan y son agotados (por ejemplo la madera o la pesca). Los recursos no renovables deben consumirse en una tasa tal que dé tiempo a encontrar un sustituto antes de que se terminen (por ejemplo el Petróleo o el Cobre). Y esto teniendo en cuenta que actualmente sólo un 20% de la población mundial tiene una elevada calidad de vida basada en el consumo de la gran mayoría de los recursos naturales.

Las sustancias contaminantes pueden ser sólidas, líquidas o gaseosas y afectan negativamente a la salud de todos los seres vivos y a la calidad y disponibilidad de los recursos naturales. Se deben emitir sustancias contaminantes a una tasa tal que el planeta las pueda asimilar y degradar. De nuevo, se debe tener en cuenta que sólo el 20% de la población produce la gran mayoría de los residuos globales como resultado de las tecnologías que le proveen su alta calidad de vida.
La escasez de recursos naturales no es un problema nuevo, la guerra por los recursos está ligada a la historia de la humanidad. Los grandes descubrimientos y viajes o los antiguos imperios tenían como objetivo el conocimiento del territorio, la extensión del poder y la cultura pero, igualmente, la búsqueda de nuevos recursos naturales. La más reciente colonización entre los siglos XIX y XX tenía como motor fundamental la explotación de los recursos de otras regiones y pueblos para alimentar la Revolución Industrial. Y, todavía hoy, sobreviven docenas de conflictos internos e internacionales que tienen como causa, entre otras, la disputa por los recursos: petróleo, agua, gas, diamantes, suelo cultivable, etc. Los recursos naturales, de hecho, se mantienen a precios forzosamente bajos mediante acuerdos internacionales en los que negocian con ventaja los países que los transforman (industrializados) frente a los países que los explotan. Es una paradoja conocida que los países ricos en recursos son pobres en desarrollo humano, aunque algunos sectores minoritarios de su sociedad sí disfruten de una elevada calidad de vida.

Una prueba de la escasez creciente de recursos que preocupa a los industriales y economistas se observa en la evolución de los precios. No sólo asusta el rápido crecimiento del precio de los combustibles primarios: petróleo, gas, carbón, uranio, etc. igual ocurre con el resto de materias primas. La siguiente figura muestra esta tendencia creciente de los precios medios de las materias primas (descontada la inflación y excluidos los combustibles). Para invertir esta tendencia y los impactos negativos que conlleva se debe ahorrar en el consumo de recursos, consumir recursos renovables y minimizar el consumo de recursos no renovables.

Precios de las materias primas en Europa en media. Euros constantes relativos al año 2000 (base 100).

Obsérvese que durante la desacele-ración económica del periodo 2000-2003 los precios se mantuvieron estables y bajos para volver a crecer con el desarrollo económico global iniciado en 2004.

Figura 1.8. La creciente demanda de recursos naturales eleva su precio en el mercado
Fuente: www.bundesbank.de
Igualmente preocupante es la presión ejercida sobre el planeta por la producción de sustancias contaminantes. A ésta, además, se suma la presión sobre los recursos naturales para cuestionar la sostenibilidad del desarrollo humano actual. Muchos son los impactos ambientales locales y globales que amenazan la vida de los seres vivos incluida la especie humana. La degradación ambiental ha causado históricamente y actualmente hambrunas, plagas, epidemias y catástrofes naturales en ciertas regiones. Pero, además, a nivel global pone en peligro la vida como se conoce hoy. La siguiente gráfica muestra una de las peores amenazas ambientales globales causadas por el ser humano: el cambio climático.

Estas tres gráficas tienen un mismo eje que incluye los últimos 1.000 años (eje horizontal).

De arriba a abajo, la primera gráfica muestra cómo ha evolucionado la temperatura media del planeta en términos relativos a la temperatura media en el año 1.000.

La segunda gráfica muestra la evolución de la concentración media de CO$_2$ en la atmósfera.

La tercera gráfica muestra las emisiones de CO$_2$ y sustancias carbonadas a partir del consumo de combustibles fósiles y de la quema de selva y matorral para aumentar la tierra cultivable y de pastoreo.

Se observa que la correlación es evidente y el cambio climático está impulsado por la actividad humana desde la Revolución Industrial.

Figura 1.9. El origen humano del cambio climático

Fuente: www.usgcrp.gov
Se necesita, por tanto, un cambio económico, cultural y tecnológico que desencople el desarrollo humano de la contaminación. Para ello también es necesario promocionar el ahorro que no sólo reduce el consumo de recursos, sino que además reduce la producción de contaminantes. Se debe usar nuevas sustancias menos contaminantes, innovar en producción y logística y fomentar la reutilización, el reciclaje y la revalorización para cerrar el ciclo físico de los materiales y la energía (ver figura 1-14).

Pero si el ritmo de consumo y contaminación de los países industrializados está lejos de ser sostenible para el planeta, un nuevo desafío surge con el rápido desarrollo de la economía de dos países superpoblados: China e India. Estos países han encontrado una fórmula de crecimiento con éxito económico que plantea como posible que su población, más de 2.000 millones de seres humanos, alcance niveles de vida comparables a los de los países industrializados (que no suman ni de lejos tanta población). La solución no puede estar en negarles el derecho al consumo de recursos o a contaminar, sino en encontrar soluciones técnicas que permitan que mucha más población satisfaga sus necesidades de forma mucho más eficiente.

La industria es la actividad humana que más recursos consume y más contaminantes produce, por comparación con la extracción y procesado de materias primas (minería, agricultura, pescadería, etc.), la realización de servicios (consultoría, administración pública, ocio, etc.) y la residencia (viviendas, desplazamientos, consumo doméstico, etc.). Por tanto, el reto para la industria es ineludible. Los capítulos 9 y 10 abordan las técnicas y herramientas del diseño para conseguir este trascendente objetivo.

Como reflexión final se hace referencia a las industrias y empresas que ya han iniciado el cambio hacia una producción sostenible. El índice bursátil Dow Jones (DJ) incluye a una serie de empresas que cumplen unos requisitos, y coincide que todas son líderes globales en tamaño en su sector económico. Del DJ se ha derivado un nuevo índice, el Índice de Sostenibilidad Dow Jones (Dow Jones Sustainability Index, DJSI) que engloba, en su versión World DJSI a 318 empresas de 2500 analizadas (a fecha de septiembre de 2007)\(^3\). Estas empresas transnacionales son las más sostenibles entre las del DJ. No implica que sean empresas sostenibles pero sí que han hecho de la sostenibilidad una estrategia para diferenciarse. Lo interesante de este índice es que es un éxito y sus empresas son más rentables que la media. Es decir, apostar por la sostenibilidad hace igualmente competitiva a estas empresas, si no más. En efecto, las siguientes figuras muestran, por un lado cómo su rentabilidad es ligeramente mejor que la media bursátil y, por otro lado, que todos los sectores industriales están presentes en el índice. Con estos datos se pretende ilustrar que el cambio hacia la sostenibilidad es posible y que

\(^3\) Es interesante destacar que España es el 7\(^{o}\) país con más industrias en el DJSI por detrás de EE.UU., Reino Unido, Alemania, Suiza, Francia y Japón, por ese orden.
las empresas que marcan las tendencias ya parecen evolucionar hacia una producción sostenible. Sólo cabe desear que el cambio llegue suficientemente rápido.

Figura 1.10. El índice de Sostenibilidad de Dow Jones

Fuente: www.sustainability-indexes.com
1.3. DISEÑAR PRODUCTOS INDUSTRIALES

1.3.1. TIPOS DE PRODUCTOS INDUSTRIALES

Se puede distinguir entre productos artesanales e industriales, según quién los fabrique, con qué técnicas y con qué objetivos. Los productos artesanales no se fabrican en industrias y usan poca o ninguna automatización porque no tienen como objetivo ser producidos en serie (muchos y todos iguales). Por el contrario su interés está en ser casi únicos, o en estar adaptados a cada necesidad particular: un traje, una joya, una reforma en la vivienda, un mueble, un elemento decorativo, etc. Por tanto son productos personalizados y de mayor precio (ver figura 1-2). Los productos artesanos, por lo general, no necesitan una metodología de diseño y son más fruto de la habilidad e inspiración de su fabricante. No suelen requerir equipos multidisciplinares de trabajo, ni dibujos o planos previos, no se hace un presupuesto detallado, etc.

Por el contrario los productos industriales, o bien tienen gran complejidad y se justifica el uso de medios de producción industriales (buques, aviones, aerogeneradores...) o bien se fabrican en grandes series buscando la disminución del precio unitario. Son productos no personalizados, fabricados con maquinaria automática dirigidos a segmentos de mercados más o menos amplios y no a una persona concreta (aunque pueden incluir módulos variables que permitan adaptar el producto a cada usuario). Estos productos si se realizan a partir de un diseño previo, más o menos complejo y detallado, realizado por un equipo más o menos amplio y multidisciplinar.

En este libro se va a estudiar el diseño para hacer bienes industriales y de consumo. Pero existen muchos tipos de productos industriales, algunos muy diferentes entre sí, y esto limita la utilidad y universalidad de las técnicas de diseño. Efectivamente, clasificándolos para simplificar su descripción, se puede distinguir productos industriales materiales de inmateriales, y productos únicos de múltiples. Por materiales se refiere a productos tangibles, objetos, que se producen a partir de la transformación de materias primas. Por inmateriales se refiere a productos intangibles, servicios, que se producen a partir de la transformación de información y pueden quedar recogidos o no en un soporte físico.

Se consideran productos únicos aquéllos que sólo se producen una vez, es decir, no pueden ejecutarse idénticos para varias demandas porque cada una requiere una solución distinta. No obstante, los resultados de estos proyectos pueden ser muy útiles para proyectos semejantes. Hay diversas razones para un proyecto único:

- su complejidad y tamaño,
- una única demanda,
- la necesidad de adaptarlo con gran precisión a un elevado número de condiciones que muy probablemente nunca se repetirán,
- o, lógicamente, combinación de estas situaciones.
Finalmente, se consideran productos múltiples aquellos que pueden ejecutarse idénticos para varios clientes a partir de un único proyecto porque las diferencias entre los clientes no son muy importantes. La siguiente tabla muestra algunos ejemplos para cada una de las clasificaciones posibles al combinar ambos conceptos:

<table>
<thead>
<tr>
<th>Tabla 1.2. Tipos de productos industriales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Único</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>- Naves industriales.</td>
</tr>
<tr>
<td>- Subestaciones transformadoras.</td>
</tr>
<tr>
<td>- Instalación de vapor.</td>
</tr>
<tr>
<td>- Buque especialista.</td>
</tr>
<tr>
<td>Inmaterial</td>
</tr>
<tr>
<td>- Plan estratégico.</td>
</tr>
<tr>
<td>- Inspección técnica.</td>
</tr>
<tr>
<td>- Sistema de calidad.</td>
</tr>
<tr>
<td>- Plan de emergencia.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cada uno de estos grupos de proyectos demanda un tipo diferente de metodología y herramientas de proyecto y, de hecho, diversos autores distinguen una tipología de proyectos para cada tipo de productos. Sin embargo, en la práctica muchas técnicas de proyectos son apropiadas para diversos tipos de proyectos. En este libro se aborda la tipología de proyectos de productos industriales materiales y múltiples. Entre estos productos materiales y múltiples se puede distinguir:

- Por complejidad:
 - Los que implican altos intereses económicos, alta dificultad técnica y elevada complejidad organizativa: Locomotoras, barcos, aviones, etc.
 - Los de moderada o baja complejidad técnica y organizativa: electrodomésticos, muebles, complementos textiles, etc. en general, todos los productos menos los arriba citados.
• Por destino:
 ■ Los productos para usuarios finales: productos que se usan directamente y no se integran en otros productos. A su vez divisible en:
 - Productos para segmentos amplios de mercado: electrodomésticos, teléfonos móviles, complementos de vestido, etc.
 - Productos para segmentos muy reducidos de mercado: máquinas industriales, agrícolas, instrumental médico, etc.

 • Los productos para usuarios intermedios o usuarios generalmente industriales, es decir, subsistemas, componentes y partes: fuentes de alimentación, leds, engranajes, ejes, acabados superficiales, envases, etc.

Para todos estos productos son útiles las metodologías y herramientas que se recogen en el libro. Sin embargo, por la experiencia de los autores, la gran mayoría de los ejemplos que ilustran cada técnica son de productos de baja o moderada complejidad y destinados a usuarios finales.

1.3.2. EL CICLO DE DISEÑO DE LOS PRODUCTOS INDUSTRIALES

No es sencillo explicar cuál es el ciclo de un diseño. Desde que alguien detecta una necesidad no satisfecha, o insuficientemente satisfecha, hasta que un nuevo producto sale al mercado se sucede un gran número de actividades. Actividades que varían de unos productos a otros, y de unas industrias a otras para un mismo producto. En el capítulo 3 se va a explicar este ciclo con más detalle. Pero, como introducción, se puede afirmar que por encima de las diferencias existen unas pautas comunes que permiten dividir el ciclo de un diseño en diversas fases.

Si se considera que el diseño acaba cuando los dibujos, las instrucciones de fabricación, los presupuestos y, en general, toda la documentación que lo explica es definitiva, entonces se puede distinguir cuatro fases:

2. Especificaciones.
3. Diseño conceptual.
4. Diseño de detalle.

La fase de Idea es muy ambigua. Igual puede surgir una innovación de una vieja idea descartada que ahora es viable, que de un encargo inmediato relacionado con una nueva demanda. Aunque existen técnicas para regularla, tiene un proceso difuso en el que se contacta con diversos grupos de interés, se prueba y corrige continuamente y pudiera ocurrir que se propongan soluciones que no se parecerán nada al producto final.
En la fase de Especificaciones, por el contrario, el procedimiento es mucho más lineal y está más controlado. En esta fase, una vez aclarada la idea o conjunto de ideas, se realiza una búsqueda exhaustiva y metódica de información relativa a todos los grupos de interés de la industria y el producto. Se procesa la información obtenida en forma de restricciones, requisitos y condiciones y se incluyen en la lista de especificaciones de producto (ver capítulo 4). Esta lista de especificaciones es un enunciado del problema de diseño a resolver y actúa como un contrato de diseño. En ocasiones la lista de especificaciones es revisable, por lo general no lo es (en el capítulo 4 se explica esto con detalle).

En la fase de concepción o Diseño conceptual el enunciado del problema empieza a resolverse con las primeras soluciones en forma de funciones, geometrías generales, materiales principales, etc. En esta fase se trabaja con ratios, estimaciones y dibujos aproximados. No importa tanto el detalle como el conjunto: la definición y armonización de los previsibles subsistemas. El producto empieza a existir como idea o concepto y ya se puede empezar a evaluar si cumple las especificaciones de producto. Si no las cumple se debe revisar el diseño, o las especificaciones si se puede.

Finalmente, en la fase de Diseño de detalle se desarrolla el diseño de todo el futuro producto, hasta su parte más elemental, incluyendo instrucciones de fabricación, presupuestos, manuales de uso, especificaciones para la homologación, etc. En esta fase se suelen realizar además modelos informáticos y maquetas físicas para probar las soluciones de detalle. También se suelen hacer pre-series de fabricación por si, de los resultados de esta producción experimental, se derivan cambios de detalle para el diseño (o no tan de detalle). En esta fase, también se elabora toda la documentación final del diseño.

Es frecuente que las fases de diseño se solapen en el tiempo y el uso de recursos humanos y técnicos (ver figura 1-11). Esta descomposición del ciclo de diseño atiende más a las características comunes de las actividades que a la secuencia en el tiempo. Lógicamente, puesto que la información generada en unas es la información de partida de otras, sí se suele dar una cierta secuenciación temporal. Pero la presión por reducir los ciclos de diseño, la necesidad de satisfacer necesidades de diversos agentes en diversas disciplinas industriales, y la presión por reducir fallos y rediseños, ha hecho evolucionar las técnicas de diseño hacia el solape de las fases, el desarrollo de modelos informáticos compartidos por todos los diseñadores y la gestión centralizada en servidores.

1.3.3. EL CICLO DE LOS PRODUCTOS INDUSTRIALES

Tan importante es conocer el ciclo del diseño como el ciclo de vida de los productos. De hecho, ésta es una de las líneas recientes de investigación y renovación de los más importantes métodos de producción. El conjunto de conocimientos, estrategias y técnicas que está produciendo se ha dado en llamar Ingeniería del ciclo de vida de los productos.
Se puede definir el ciclo de vida de los productos desde el punto de vista del ciclo económico para la organización que los oferta o desde el punto de vista del ciclo de vida físico del objeto. Ambos son conocidos y estudiados desde hace mucho tiempo pero todavía las empresas gestionan mucho mejor el ciclo económico que el ciclo físico por diversas razones que se discuten más adelante.

1.3.3.1. Ciclo de vida económico de un producto

Se puede definir el ciclo de vida económico de un producto como el periodo en el cual el producto tiene alguna influencia económica directa en la empresa que lo oferta. Así, el producto nace económicamente para la empresa cuando empieza a dedicarle recursos a su idea y especificación. El producto se define y cuesta más recursos a medida que se progrese en sus conceptos (ver figura 1-11). Si el diseño se acepta se continúa su desarrollo y se elaboran las primeras maquetas, prototipos y preseries. Finalmente se prueba y se termina su diseño final. A estas fases les sigue una fase de fuerte inversión en las compras y en la producción del producto (Fase de fabricación y adquisición). El producto alcanza la madurez económica cuando se explota regularmente (Fase de explotación) hasta que finalmente se hace obsoleto, se retira del mercado y muere económicamente para la empresa.

La figura 1-11 muestra las fases del ciclo de vida económico de un producto material y múltiple, así como los costes que supone para una empresa. Como se puede observar, si bien el ciclo económico es lineal, puede haber un cierto solapamiento entre las fases de su evolución.

![Diagrama de Ciclo de Vida Económico de un Producto]

Figura 1.11. Fases y costes del ciclo de vida económico de un producto

Fuente: Adaptada de Capuz, 1999
Si se hace un balance de los costes de un ciclo de vida económico genérico se puede obtener una evolución de los flujos económicos de la empresa como la que se muestra en la figura 1-12. Así, al principio, el producto sólo genera costes. En un cierto momento T₁, se habrán acumulado los costes de la concepción y definición que se pueden denominar Inversión en diseño (cubierta por la curva hasta T₁). Con las pruebas, prototipos y primeras series fabricadas se termina la fase de desarrollo y se acumula la inversión en desarrollo del producto (cubierta hasta T₂). En cuanto empiezan las adquisiciones y la fabricación los costes crecen rápidamente y sólo cambian de tendencia cuando se empiezan a obtener ingresos por la venta del producto. En un cierto momento (T₃) se llega al balance negativo máximo y empieza a evolucionar hacia la obtención de beneficios. Si el producto genera más ingresos que gastos durante la fase de fabricación/explotación, el balance se hace positivo a partir de un cierto tiempo (T₄). Si no es así, genera pérdidas y la empresa debe buscar una alternativa rápidamente. Aun si el producto genera beneficios sólo será un éxito si los beneficios acumulados superan las inversiones acumuladas con un cierto margen que determina la rentabilidad. Es decir, el producto de la figura cumple las expectativas económicas durante su ciclo de vida económico si el área bajo la curva a partir de T₄ es mayor que el área sobre la curva hasta T₄; y la diferencia entre las áreas cubiertas determina las ganancias acumuladas netas o su rentabilidad (todo esto se explica con más detalle en el capítulo 7). Pasado un cierto tiempo el producto se hace obsoleto porque las demandas que lo originaron han evolucionado y ya no las satisface, porque otros productos y servicios la satisfacen mejor o porque cambia el poder adquisitivo de los compradores. En todo caso el producto inicia su declive en aceptación y ventas y es retirado de la oferta, desapareciendo más o menos paulatinamente del mercado.

Las empresas no pueden permitirse tener periodos de pérdidas por lo que tienden a gestionar los ciclos económicos de sus productos de tal forma que continuamente obtengan beneficios. La figura 1-13 simula esta gestión. Así, mientras se fabrica y explota el producto A, la empresa ya está diseñando y probando el producto B, de forma que su lanzamiento coincida y compense el declive del producto A. Poco después de lanzar el producto B se inicia el diseño del producto C y así sucesivamente.

Estos ciclos económicos son tan diferentes como diferentes son los productos materiales y múltiples. Así, un automóvil tiene unas fases de concepto, diseño y desarrollo, de alrededor de 2 años y una fase de explotación de entre 10 y 15 años, mientras que un herraje de un mueble tiene un diseño de pocas semanas y una explotación de 15 o más años. Por otro lado, no todos los productos se renuevan al mismo ritmo. Siguiendo con el ejemplo de los herrajes, durante décadas prácticamente no habían cambiado y los muebles se montaban todos de igual forma hasta que, recientemente, con el éxito de los muebles montados por el propio usuario, los herrajes han evolucionado y variado mucho, simplificando el montaje y permitiendo numerosas operaciones de montaje y desmontaje de muebles.
Figura 1.12. Ciclo de vida económico de un producto
Fuente: Adaptada de Gómez-Senent y Capuz, 1999

Figura 1.13. Programación de los ciclos de vida económicos de un sistema productivo
Fuente: Adaptada de Gómez-Senent y Capuz, 1999
1.3.3.2. Ciclo de vida físico de un producto

Al igual que un producto se puede estudiar según aparece y desaparece en las cuentas económicas de una empresa, se puede estudiar también su evolución según aparece y desaparece físicamente en el planeta. Así, un producto se gesta físicamente cuando sus materias primas son extraídas del medio natural y se convierten en sustancias y componentes artificiales del futuro producto (Fase extracción y elaboración de materias primas), el producto se fabrica y existe en la Fase de producción y empieza su Vida útil cuando se usa (Fase consumo). Durante su vida útil el producto se mantiene operativo pero llega un momento en que esto ya no es posible o no es deseable y el producto deja de usarse y se retira (Fase de retiro). Durante toda su vida física el producto ha intercambiado materia, energía e información con el entorno, consumiendo recursos y liberando residuos sólidos, líquidos y gaseosos (ver figura 1-14).

![Diagrama del ciclo de vida físico de un producto]

Figura 1.14. Fases del ciclo de vida físico de un producto
Fuente: Adaptada de Capuz y Gómez, 2002

Las empresas suelen poner mucho empeño en la correcta gestión del ciclo de vida económico de los productos pero no tanto en la gestión del ciclo de vida físico. Esto se debe a diversas razones que se pueden resumir en dos principales: el desconocimiento de cómo influye el ciclo de vida físico en el económico y la
Para seguir leyendo haga click aquí