

Lecciones breves de Mecánica orbital

José A. Moraño

Lecciones breves sobre Mecánica orbital

José Antonio Moraño Fernández

Colección Académica http://tiny.cc/edUPV aca

Para referenciar esta publicación utilice la siguiente cita: Moraño Fernández, José Antonio (2023). *Lecciones breves sobre Mecánica orbital*. Valencia: edUPV

© José Antonio Moraño Fernández

© 2023, edUPV Venta: www.lalibreria.upv.es / Ref.: 6515 01 01 01

ISBN: 978-84-1396-120-0 (versión impresa) ISBN: 978-84-1396-121-7 (versión electrónica)

Si el lector detecta algún error en el libro o bien quiere contactar con los autores, puede enviar un correo a edicion@editorial.upv.es

edUPV se compromete con la ecoimpresión y utiliza papeles de proveedores que cumplen con los estándares de sostenibilidad medioambiental https://editorialupv.webs.upv.es/compromiso-medioambiental/

La Editorial UPV autoriza la reproducción, traducción y difusión parcial de la presente publicación con fines científicos, educativos y de investigación que no sean comerciales ni de lucro, siempre que se identifique y se reconozca debidamente a la Editorial UPV, la publicación y los autores. La autorización para reproducir, difundir o traducir el presente estudio, o compilar o crear obras derivadas del mismo en cualquier forma, con fines comerciales/lucrativos o sin ánimo de lucro, deberá solicitarse por escrito al correo edicion@editorial.upv.es

Autor

JOSÉ ANTONIO MORAÑO FERNÁNDEZ

Profesor del Departamento de Matemática Aplicada en la Escuela Técnica Superior de Ingeniería del Diseño (ETSID) en la UPV desde 1998. Desde entonces ha impartido docencia en prácticamente la totalidad de las titulaciones de la ETSID. Actualmente imparte docencia en asignaturas relacionadas con el estudio de órbitas y la mecánica ingeniería aeroespacial y el más-ter orbital para el grado de de ingeniería aeronáutica. Ha publicado numerosos trabajos en revistas v congresos y varios textos en esta editorial. En 2011 le fue concedido el Premio a la Excelencia Docente por el Consejo Social y la Generalitat Valenciana.

Resumen

El texto consta de 25 capítulos o sesiones dedicados al estudio del movimiento orbital de naves y satélites. Los dos primeros temas presentan los puntos y elementos más importantes de la esfera celeste y los sistemas de coordenadas y tiempos más utilizados. Un segundo bloque de doce temas se dedica a la obtención y resolución de las ecuaciones del movimiento orbital. mostrando los tipos de órbitas v sus características, así como la relación entre el tiempo y la posición orbital. capítulos describen como realizar maniobras v Los últimos once transferencias entre órbitas incluyendo un estudio aproximado del explicar lanzamiento. Cada tema estáorientado un obietivo a específico de la dinámica orbital incluyendo ejemplos que ayudan a su comprensión y que facilitan la elección de los procesos de cálculo.

Prólogo

La Mecánica orbital es la disciplina centrada en comprender y analizar las trayectorias espaciales de satélites, naves y cuerpos celestes. También incluye el estudio de maniobras y transferencias orbitales considerando que son la aplicación de uno o más impulsos para modificar la órbita inicial.

En este texto se presentan las nociones más básicas de la Mecánica orbital junto con ciertos procedimientos de cálculo de parámetros y ecuaciones que permiten identificar los diferentes tipos de órbitas, estudiar sus características y/o realizar modificaciones en ellas.

Cada capítulo puede considerarse una sesión de aprendizaje (clase) para entender y conocer un tema específico de la Dinámica orbital. El enfoque es muy práctico, apoyando las exposiciones con numerosos ejemplos donde las expresiones utilizadas están referenciadas y donde se destacan con un recuadro aquellas que son de uso frecuente en Astrodinámica.

En cada tema se presentan explicaciones que proporcionan una primera aproximación al objetivo específico de ese capítulo, dejando al lector la posibilidad de profundizar en aquellos que le lleguen a interesar de manera especial.

El autor

Índice general

Prólogo		i	
1	La e 1.1 1.2 1.3 1.4 1.5 1.6 1 7	esfera celeste y sistemas de coordenadas Introducción y objetivos	1 2 4 5 7 10
2	Tien 2.1 2.2 2.3 2.4 2.5	mpos y cambios de coordenadas Introducción y objetivos	11 11 12 17 19 22
3	Ecu 3.1 3.2	aciones del movimiento Introducción y objetivos	23 23 24

•

	3.3	Ecuación del movimiento relativo	28
	3.4	Cierre	30
4	Parámetros constantes de una órbita kepleriana		
	4.1	Introducción y objetivos	31
	4.2	Conservación del momento angular de una órbita, \vec{h}	32
	4.3	Conservación de la velocidad areolar o Ley de las Áreas	36
	4.4	Conservación de la Energía de una órbita, ξ	37
	4.5	Constancia del vector de Laplace y de excentricidad, \overrightarrow{e}	38
	4.6	Cierre	40
5	La	ecuación orbital en polares	41
	5.1	Introducción y objetivos	41
	5.2	La ecuación del movimiento en coordenadas polares	42
	5.3	Consecuencia 1: Geometría de las órbitas resultantes	43
	5.4	Consecuencia 2: Expresión de las componentes de la velocidad	
		en función de θ	45
	5.5	Consecuencia 3: El ángulo de vuelo en función de θ	46
	5.6	Consecuencia 4: La energía en función de otros parámetros	46
	5.7	Cierre	48
6	Análisis y ejemplos de órbitas circulares		
	6.1	Introducción y objetivos	49
	6.2	Características de las órbitas circulares $(e = 0)$	49
	6.3	Ejemplos de órbitas que suelen ser circulares	50
	6.4	Cierre	56
7	Aná	ilisis y ejemplos de órbitas elípticas	57
	7.1	Introducción y objetivos	57
	7.2	Características de las órbitas elípticas $(0 < e < 1)$	58
	7.3	Ejemplos de uso de órbitas elípticas	64
	7.4	Cierre	66
8	Análisis y ejemplos de órbitas parabólicas		
	8.1	Introducción y objetivos	67
	8.2	Características de las órbitas parabólicas $(e = 1)$	67
	8.3	Ejemplos de órbitas parabólicas	69
	8.4	Cierre	70
9	Aná	ilisis y ejemplos de órbitas hiperbólicas	71
	9.1	Introducción y objetivos	71

	9.2 9.3 9.4	Características de las órbitas hiperbólicas $(e > 1)$ Ejemplos	72 77 80
10	El ti	iempo de vuelo en órbitas elípticas	81
10	10.1	Introducción v objetivos	81
	10.2	Tiempo de paso por el periapsis, (t_n) .	82
	10.3	Ecuación de tiempos para órbitas elípticas, $(0 < e < 1)$	83
	10.4	Cierre	90
11	El ti	iempo de vuelo en órbitas parabólicas	91
	11.1	Introducción y objetivos	91
	11.2	Ecuación de tiempos para órbitas parabólicas, $(e = 1)$	92
	11.3	Cierre	96
12	El ti	iempo de vuelo en órbitas hiperbólicas	97
	12.1	Introducción y objetivos	97
	12.2	Ecuación de tiempos para órbitas hiperbólicas, $(e > 1)$	98
	12.3	Cierre	106
13	Órbi	itas en tres dimensiones: Elementos orbitales 1	.07
	13.1	Introducción y objetivos	107
	13.2	Elementos orbitales clásicos (COEs)	108
	13.3	Obtención de los elementos a partir del vector estado 1	109
	13.4	Sistema de referencia Perifocal	113
	13.5	Conversión de elementos a coordenadas Geocéntrico-Ecuatoriales	115
	13.6	Cierre	116
14	Efec	tos del achatamiento terrestre sobre las órbitas 1	17
	14.1	Introducción	117
	14.2	¿Qué es el achatamiento terrestre?	118
	14.3	Consecuencias del achatamiento terreste	120
	14.4	Aplicación de la Precesión del nodo: Órbitas Heliosíncronas 1	122
	14.5	Aplicación del Avance del perigeo: Órbitas MOLNIYA 1	123
	14.6	Cierre	126
15	Man	niobras orbitales impulsivas 1	.27
	15.1	Introducción y objetivos	127
	15.2	Maniobras impulsivas	128
	15.3	Maniobras simples	129
	15.4	Cierre	134

16	Tran	nsferencia de Hohmann	135
	16.1	Introducción y objetivos	135
	16.2	Transferencia de Hohmann entre órbitas circulares	136
	16.3	Análisis de la transferencia de Hohmann	139
	16.4	Transferencia de Hohmann entre órbitas elípticas	140
	16.5	Cierre	142
17	Vari	aciones de la transferencia de Hohmann: Segmentada y	
	Bieli	íptica	143
	17.1	Introducción y objetivos	143
	17.2	Transferencia de Hohmann Segmentada	144
	17.3	Transferencia Bielíptica entre órbitas circulares	146
	17.4	Cierre	154
18	Man	iobra impulsiva general coplanaria (No-Hohmann)	155
	18.1	Introducción y objetivos	155
	18.2	Variación del vector velocidad en órbitas coplanarias	156
	18.3	Aplicación: Rotación de la línea de ápsides	159
	18.4	Cierre	166
19	Man	liobras de cambio de plano	167
	19.1	Introducción	167
	19.2	Maniobras con cambio de plano	168
	19.3	Cambios de plano en órbitas circulares	175
	19.4	Cierre	178
20	Ren	dezvous con transferencias de Hohmann	179
	20.1	Introducción y objetivos	179
	20.2	Maniobras de fase	180
	20.3	Oportunidad de rendezvous con transferencias de Hohmann	184
	20.4	Cierre	192
21	El p	roblema de Lambert en transferencias orbitales	193
	21.1	Introducción y objetivos	193
	21.2	El problema de Lambert	195
	21.3	Algoritmo del problema de Lambert	198
	21.4	Aplicación: Maniobra de aproximación	201
	21.5	Cierre	204

22	Tier	npo y lugar para el lanzamiento de satélites	205
	22.1	Introducción y objetivos	205
	22.2	Inclinaciones accesibles desde una base	206
	22.3	Direcciones/azimuts de lanzamiento	208
	22.4	Hora del lanzamiento	209
	22.5	Cierre	212
23	Imp	ulso requerido para una inserción en órbita	213
	23.1	Introducción y objetivos	213
	23.2	Velocidad subyacente de un lanzamiento	214
	23.3	Velocidad para compensar las pérdidas gravitatorias	216
	23.4	Velocidad de inserción en órbita	217
	23.5	Impulso requerido para el lanzamiento	219
	23.6	Cierre	220
24	Ren	dimiento del lanzamiento de un cohete: Etapas	221
	24.1	Introducción y objetivos	221
	24.2	Rendimiento de los cohetes de alto empuje	222
	24.3	Lanzamiento en una sola etapa	223
	24.4	Lanzamiento en dos etapas	224
	24.5	Lanzamiento en tres o más etapas	232
	24.6	Cierre	232
25	Man	iobra orbital no impulsiva	233
	25.1	Introducción v objetivos	233
	25.2	Expresión vectorial del movimiento con empuje continuo	234
	25.3	Expresión escalar de r con bajo empuje	236
	25.4	Aplicación: Transferencias con impulso prolongado	239
	25.5	Cierre	244
Bil	oliogi	rafía	245

Capítulo 1

La esfera celeste y sistemas de coordenadas

1.1 Introducción y objetivos

Entre los sistemas de coordenadas utilizados en la mecánica orbital, se van a destacar los tres principales:

- Heliocéntrico/Baricéntrico/Geocéntrico Eclíptico
- Geocéntrico Ecuatorial
- Topocéntrico Horizontal

Los sistemas son elegidos para que los diferentes tipos de movimiento sean fáciles de visualizar y calcular. La elección de un sistema de coordenadas adecuado puede simplificar mucho la resolución de un problema. Cada sistema queda definido por:

Un Origen, un Plano y una Dirección de referencia

Cualquier sistema de referencia ligado a las estrellas fijas s e considera inercial.¹ Incluso se consideran inerciales los sistemas con Origen en la Tierra y ejes dirigidos a estrellas fijas, pues e l e rror cometido e s d e u na p equeña aceleración centrífuga² que no es considerada en las primeras aproximaciones de los cálculos.

¹Realmente no es así porque el Sol se mueve alrededor del centro de la Galaxia. ² $\|\overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r})\| \approx \omega^2 r \approx \left(\frac{2\pi}{365\cdot86164}\right)^2 \cdot 150 \cdot 10^9 \approx 0.006 \, m/s^2 \ll 9.81 \, m/s^2$ El objetivo de este capítulo es que, tras leerlo con atención, seas capaz de:

- Reconocer y ubicar correctamente los puntos y elementos más destacados de la Esfera Celeste.
- Distinguir y utilizar los sistemas de coordenadas más importantes empleados en Mecánica Orbital (Heliocéntrico, Geocéntrico y Topocéntrico) tanto sus expresiones cartesianas como las angulares.
- Convertir sin ambigüedades las coordenadas cartesianas en angulares y viceversa en cualquiera de los sistemas anteriores.
- Situar en el espacio tridimensional un objeto por sus coordenadas.

1.2 Elementos destacados en la esfera celeste

Antes de definir los sistemas de coordenadas utilizados para describir las órbitas de satélites debemos conocer algunos elementos necesarios para su definición.

La **eclíptica** es el plano de la órbita que la Tierra describe en su movimiento alrededor del Sol (ver figura 1.1)

Figura 1.1: La eclíptica es el plano que contiene la órbita terrestre

En la figura se puede observar que el eje de rotación de la Tierra no es perpendicular a la eclíptica y forma con ésta un ángulo que se conoce como **oblicuidad de la eclíptica** y cuyo valor es de $\varepsilon = 23.4^{\circ}$. Por tanto, el plano ecuatorial y el de la eclíptica intersectan en una recta conocida como **línea de equinoccios**. El equinoccio vernal se produce el primer día de primavera cuando visto desde la Tierra el Sol cruza el Ecuador de Sur a Norte en lo que se llama movimiento aparente del Sol (ver figura 1.2). La posición del Sol en ese instante define un punto en el cielo, γ , llamado **Punto Vernal** o **Punto Aries**³ (ver figuras 1.1 y 1.2). En el equinoccio el día y la noche duran lo mismo y de ahí su nombre. Hay otro equinoccio cuando el Sol aparenta cruzar el Ecuador de Norte a Sur al que se le conoce como equinoccio de otoño o Punto Libra (Ω) el cual se produce medio año después del vernal.

En la mayoría de los casos se considera que el punto vernal está fijo en el espacio pero en realidad está girando lentamente. Este giro se debe a que la Tierra no es esférica y a la atracción de la Luna y el Sol. El eje de rotación de la Tierra gira hacia el oeste a razón de 1.4° por siglo alrededor del vector normal a la eclíptica, dando una vuelta completa cada 26000 años. Este efecto se conoce como **precesión de los equinoccios** y se puede ver en la figura 1.3.

Figura 1.3: El eje de rotación gira alrededor del eje eclíptico (precesión) y también sufre una especie de bamboleo (nutación).

 $^{^3\,}$ Hace unos 4000 años el punto vernal se encontraba en la constelación de Aries y de ahí su nombre pero, actualmente se encuentra entre Piscis y Acuario

En esa misma figura se puede ver que la acción de la Luna añade un efecto sobre la precesión llamado **nutación**, que hace que la oblicuidad de la eclíptica sufra un pequeño bamboleo con una amplitud de 0.0025° cada 18.6 años.

1.3 Sistema de referencia Heliocéntrico-Eclíptico, (λ, β)

El sistema **Heliocéntrico-Eclíptico** es utilizado en misiones interplanetarias cuando las naves escapan de las esferas de influencia de los p l anetas. Este sistema queda definido por:

- Origen: El Sol.
- Plano de referencia: El plano de la eclíptica.
- Dirección fija: La dirección del punto vernal.

En este sistema, como se puede ver en la figura 1.4, el Ecuador queda inclinado respecto de la eclíptica. El eje X apunta al Punto Vernal, el eje Z es perpendicular al plano de la eclíptica y el eje Y se elige para formar el triedro a derecha.

Figura 1.4: El sistema Heliocéntrico-Eclíptico: Coordenadas cartesianas y angulares

Además de estas coordenadas rectangulares se pueden definir dos medidas angulares (figura 1.4): La **Longitud eclíptica** (λ) es el ángulo medido sobre la Eclíptica desde el Punto Vernal hacia el Este y, la conocida como **Latitud eclíptica** (β) que es el ángulo medido desde ésta y perpendicularmente a ella.

Nota 1.3.1 Si consideramos este sistema de coordenadas eclíptico, manteniendo los mismos ejes, pero teniendo como Origen el Baricentro del Sistema Solar se le denomina **Baricéntrico-Eclíptico** y si el origen de las coordenadas es la Tierra, **Geocéntrico-Eclíptico**. Todos estos sistemas de referencia Eclípticos se consideran habitualmente inerciales porque se referencian respecto al Punto Vernal. **EJEMPLO 1.3.1** Halla la expresión de las coordenadas rectangulares eclípticas $(X_{\varepsilon}, Y_{\varepsilon}, Z_{\varepsilon})$ en función de las angulares (r, λ, β) .

Utiliza esta expresión para hallar las coordenadas eclípticas rectangulares de la sonda Juno cuando sus coordenadas angulares eran:

$$r = 2.0383 U.A.; \ \lambda = 26^{\circ}54'46" \ y\beta = -7^{\circ}47'31"$$

Solución: Observando la figura 1.4 se deduce que

$$X_{\varepsilon} = r \cos \beta \cos \lambda$$

$$Y_{\varepsilon} = r \cos \beta \sin \lambda$$

$$Z_{\varepsilon} = r \sin \beta$$
(1.1)

Calculando r en $km,\ 1\,U.A.=149.6\cdot 10^6\,km,$ y aplicando estas igualdades al caso de Juno se obtiene:

$$r = 2.0383 * 149.6 \cdot 10^{6} = 3.0493 \cdot 10^{8} \, km$$

$$X_{\varepsilon} = r \, \cos\beta \cos\lambda = 3.0493 \cdot 10^{8} \cos(26.9128^{\circ}) \cos(-7.79203^{\circ}) = 2.69391 \cdot 10^{8}$$

$$Y_{\varepsilon} = r \, \cos\beta \, \sin\lambda = 3.0493 \cdot 10^{8} \cos(26.9128^{\circ}) \sin(-7.79203^{\circ}) = 1.36745 \cdot 10^{8}$$

$$Z_{\varepsilon} = r \, \sin\beta = 3.0493 \cdot 10^{8} \cos(26.9128^{\circ}) = -4.13412 \cdot 10^{7}$$

1.4 Sistema de referencia Geocéntrico-Ecuatorial, (α , δ)

El sistema de coordenadas más utilizado para satélites artificiales es el llamado **Geocéntrico-Ecuatorial** (figura 1.5) c aracterizado por:

- Origen: El centro de masas del cuerpo central⁴.
- Plano de referencia: El plano ecuatorial
- Dirección fija: La dirección del punto vernal.

A partir de ahí se considera como eje X también la dirección del punto vernal, pero como eje Z el eje de rotación de la Tierra (Norte como dirección positiva) y el eje Y de forma que se verifique el triedro a derecha (X_{GE}, Y_{GE}, Z_{GE}) en figura 1.5). Estos ejes se consideran fijos respecto a las estrellas y por tanto inerciales.

⁴Normalmente, pero no siempre, la Tierra

Figura 1.5: El sistema de referencia Geocéntrico-Ecuatorial: Coordenadas cartesianas y angulares

En este caso también se pueden definir coordenadas angulares: El ángulo medido sobre el Ecuador desde la dirección del punto vernal hacia el este se conoce como **Ascensión Recta** (*RA o α*) que se indica en grados aunque los astrónomos suelen medirla en horas. El ángulo medido desde el Ecuador y de forma perpendicular a éste se conoce como **Declinación** (δ) que se considera positiva hacia el Norte y negativa hacia el Sur por lo que $-90^{\circ} \leq \delta \leq 90^{\circ}$. A estas coordenadas se les llama también **Coordenadas Absolutas**.

EJEMPLO 1.4.1 La expressión del vector posición en el sistema geocéntricoecuatorial (X_{GE}, Y_{GE}, Z_{GE}) en función de las angulares (r, α, δ) se obtiene análogamente a como se hizo en el ejemplo 1.3.1

> $X_{GE} = r \cos \delta \cos \alpha$ $Y_{GE} = r \cos \delta \sin \alpha$ $Z_{GE} = r \sin \delta$ (1.2)

Deduce las expresiones necesarias para obtener las coordenadas angulares en función de las rectangulares y utilízalas para hallar las coordenadas Geocéntricas Absolutas de la Estación Espacial Internacional (ISS) cuyo vector posición es $\overrightarrow{r}_{GE} = (-5472, -1805, 3509) \, km.$

Solución: La distancia y la declinación se pueden calcular directamente

$$\begin{vmatrix} r = \| \overrightarrow{r} \| = \sqrt{X^2 + Y^2 + Z^2} \\ \delta = \arcsin\left(\frac{Z}{r}\right) \end{aligned}$$
(1.3)

pero para la ascensión recta será necesario distinguir si es menor o mayor de 180° viendo el signo de Y

$$\alpha = \begin{cases} \arccos\left(\frac{X/r}{\cos\delta}\right) & (Y \ge 0) \\ 360^o - \arccos\left(\frac{X/r}{\cos\delta}\right) & (Y < 0) \end{cases}$$
(1.4)

Sustituyendo los valores de la ISS en (1.3) resulta

$$r = \sqrt{5472^2 + 1805^2 + 3509^2} = 6746.4 \, km$$
$$\delta = \arcsin\left(\frac{3509}{6746.4}\right) = 31.34^{\circ}$$

Para la ascensión recta se utiliza (1.4) que, considerando que Y = -1805 < 0:

$$\alpha = 360^{\circ} - \arccos\left(\frac{-5472/6746.4}{\cos 31.34^{\circ}}\right) = 198.26^{\circ}$$

Aunque \overrightarrow{r} permite calcular $\alpha \neq \delta$, el problema recíproco (obtener \overrightarrow{r} a partir de $\alpha \neq \delta$) no se puede resolver sin conocer la distancia r.

1.5 Sistema de referencia Topocéntrico-Horizontal, (El, Az)

Es un sistema de coordenadas locales también llamado **Local-Horizontal** o **Altazimutal**. Se caracteriza por usar los siguientes elementos:

- Origen: El observador
- Plano de referencia: El plano del Horizonte celeste del observador
- Dirección fija: La dirección Sur-horizontal que es la del punto intersección entre el meridiano del lugar⁵ y el Horizonte.

 $^{^5 {\}rm También}$ conocido como meridiano del observador que se define como el círculo máximo que pasa por los polos y por el zenit del observador

Centrado en el observador se considera como eje X la dirección Sur sobre el horizonte, el eje Z la dirección del Zenit y, en consecuencia, el eje Y apunta al Este $(X_T, Y_T, Z_T \text{ en figura 1.6})$. Estos ejes NO se consideran fijos respecto a las estrellas (giran con la rotación terrestre) y por tanto este sistema no es inercial.

Figura 1.6: Sistema de referencia Topocéntrico (triedro negro)

En el sistema topocéntrico también se definen dos coordenadas angulares (ver figura 1.7): El **Azimut** (Az) que se mide hacia el Este sobre el Horizonte desde la dirección Norte⁶ y la **Elevación** o **Altura** $(El \ o \ h)$ que es el ángulo entre la dirección del objeto y el plano del horizonte. En algunas ocasiones se usa en lugar de la elevación, su complementario, que se conoce como distancia cenital. En este sistema las coordenadas son locales (los valores de las coordenadas de un mismo punto cambian al cambiar el observador).

EJEMPLO 1.5.1 Encuentra las expresiones de las coordenadas topográficas rectangulares en función de las angulares. Deduce también las recíprocas. Utiliza esas expresiones para hallar:

a) (X_T, Y_T, Z_T) de la ISS observada desde un observatorio de Chile con las coordenadas angulares

 $Az = 330.257^{\circ};$ $El = 56.161^{\circ};$ $dist = 488 \, km$

b) Las coordenadas altazimutales (Az, El, dist) de la ISS si las coordenadas topocéntricas desde la ETSID el 14 de Abril de 2020 son (-1329, -432.4, 273.1) km.

 $^6\mathrm{En}$ Astronomía se mide habituálmente des
de el Sur

Solución: A partir de la figura 1.7 se deduce

$$X_T = r \cos(El) \cos(180^\circ - Az) = -r \cos(El) \cos(Az)$$

$$Y_T = r \cos(El) \sin(180^\circ - Az) = r \cos(El) \sin(Az)$$

$$Z_T = r \sin(El)$$

$$= r \sin(El)$$

(1.5)

y con un proceso similar al utilizado en el ejemplo 1.4.1 se obtiene

$$r = \|\overrightarrow{r}\| = \sqrt{X_T^2 + Y_T^2 + Z_T^2}$$

$$El = \arcsin\left(\frac{Z_T}{r}\right)$$

$$Az = \begin{cases} \arccos\left(\frac{-X_T/r}{\cos(El)}\right) & (Y_T \ge 0) \\ 360^o - \arccos\left(\frac{-X_T/r}{\cos(El)}\right) & (Y_T < 0) \end{cases}$$
(1.6)

a) Sustituyendo en (1.5) los datos de la ISS resulta

$$X_T = -6378 \cos(56.161^\circ) \cos(330.257^\circ) = -235.955 \, km$$

$$Y_T = 6378 \cos(56.161^\circ) \sin(330.257^\circ) = -134.805 \, km$$

$$Z_T = 6378 \sin(56.161^\circ) = 405.336 \, km$$

b) Utilizando las expresiones de (1.6) se obtiene

$$r = \sqrt{(-1329)^2 + (-432.4)^2 + 273.1^2} = 1424 \, km$$
$$El = \arcsin\left(\frac{273.1}{1424}\right) = 11.06^{\circ}$$

como $Y_T = -432.1 < 0$

$$Az = 360^{\circ} - \arccos\left(\frac{1329/1424}{\cos(11.06^{\circ})}\right) = 341.98^{\circ}.$$

1.6 Otros sistemas de referencia

En ocasiones se utilizan otros sistemas de referencia como:

• Sistema de referencia Local-Ecuatorial u Horario, (H, δ) . Es un sistema semilocal con origen en el centro de la Tierra, plano de referencia en plano ecuatorial y como dirección principal la de la intersección del meridiano del lugar con el Ecuador.

Las coordenadas angulares son: El **Ángulo Horario** (*H*) que se mide hacia el Oeste sobre el Ecuador desde el meridiano del lugar y la **Declinación** (δ) que coincide con la declinación geocéntrico-ecuatorial. Se dice que es semilocal porque el ángulo horario es local pero la declinación es universal.

- Sistema de referencia Geográfico cuyos ángulos son la **Longitud** (λ) y la **Latitud** (ϕ) **geográficas**. Este sistema ha sido utilizado durante siglos para localizar posiciones en la superficie de la Tierra y en Mecánica Orbital se usa en las 'Ground tracks' o trazas de los satélites que suelen representarse en este sistema de coordenadas utilizando para ello una proyección Mercator o cilíndrica de la superficie terrestre.
- Sistema de referencia Galáctico. Es un sistema utilizado en Astronomía pero que en Mecánica Orbital no suele utilizarse.

1.7 Cierre

Hemos conocido los tres principales sistemas de coordenadas utilizados en Mecánica Orbital (Heliocéntrico, Geocéntrico y Topocéntrico). En cada uno de ellos se han expuesto las coordenadas cartesianas y las angulares y se han deducido las expresiones que permiten cambiar de cartesianas a angulares y viceversa en cada uno de los sistemas.

Capítulo 2

Tiempos y cambios de coordenadas

2.1 Introducción y objetivos

En el Capítulo 1 se han presentado las características de los sistemas de referencia más utilizados en Astrodinámica:

- Heliocéntrico Eclíptico
- Geocéntrico Ecuatorial
- Topocéntrico Horizontal

En éste, se van a deducir las fórmulas que permiten cambiar las coordenadas de un cuerpo entre estos sistemas de referencia (secciones 2.3 y 2.4). Cuando en el cambio intervenga el sistema Topocéntrico, necesitaremos conocer el Tiempo Sidéreo Local que se define con antelación en la sección 2.2 explicando el método empleado para su estimación.

En la deducción de las fórmulas de los cambios de coordenadas necesitaremos recordar las **Matrices de Rotación** que permiten hallar las nuevas coordenadas de un vector en un sistema de referencia que ha girado un ángulo α alrededor de uno de los ejes respecto de otro sistema. Si el giro es alrededor de X, Y, Z las matrices de rotación son respectivamente:

$$R_X(\alpha) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\alpha & \sin\alpha\\ 0 & -\sin\alpha & \cos\alpha \end{pmatrix}; R_Y(\alpha) = \begin{pmatrix} \cos\alpha & 0 & -\sin\alpha\\ 0 & 1 & 0\\ \sin\alpha & 0 & \cos\alpha \end{pmatrix};$$
$$R_Z(\alpha) = \begin{pmatrix} \cos\alpha & \sin\alpha & 0\\ -\sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Estas matrices son ortogonales por lo que sus inversas, que calculan las coordenadas cuando el giro se hace con el ángulo opuesto, coinciden con sus traspuestas, es decir:

$$R_W(\alpha)^{-1} = R_W(-\alpha) = (R_W(\alpha))^t$$

Notar que las matrices de rotación así definidas son las inversas de las realizan la rotación de vectores alrededor de los ejes X, Y, o Z, en un sistema fijo.

El principal objetivo de este capítulo es conseguir que seas capaz de:

- Distinguir, relacionar y convertir los distintos tipos de tiempo: Tiempo Solar, Tiempo Universal (UT) y Tiempos Sidéreos.
- Calcular la fecha juliana para un instante concreto.
- Convertir coordenadas Geocéntrico-Ecuatoriales en Heliocéntrico-Eclípticas y viceversa.
- Convertir coordenadas Geocéntrico-Ecuatoriales en Topocéntrico-Horizontales y viceversa.

2.2 Tiempo Universal (UT), Día juliano (JD) y Tiempo Sidéreo Local ($\Theta_L \circ TSL$)

Para conocer la órbita de un satélite es necesario conocer el tiempo de cada observación. Existen diferentes formas de medir el tiempo de las que vamos a destacar las más utilizadas.

El tiempo que utilizamos en la vida diaria se llama **Tiempo Solar** porque se relaciona con el movimiento del Sol en la Esfera Celeste. Así, un **día solar**

(24 horas) es el tiempo transcurrido entre dos pasos consecutivos del Sol por el meridiano del lugar.

Otra medida del tiempo fundamental en Astrodinámica es el **Tiempo Universal** (**UT**). El **UT** se fija cuando a mediodía cruza el Sol por el meridiano de Greenwich ($\lambda = 0^{\circ}$). A partir del UT se puede obtener el **tiempo civil** de un lugar sin más que añadir 1 hora por cada huso horario (15°) comprendido entre Greenwich y el lugar (midiendo hacia el este).

También es importante conocer el término **Día Juliano** (**JD**) que es el número de días transcurrido desde el mediodía¹ del 1 de enero del año 4713 a.C. hasta la fecha fijada. Para hallar el día juliano de un instante (y, m, d, h) debemos hallar primero el JD a las 0*h* UT (J_0) mediante la expresión²:

$$J_0 = 367y - ENT\left[\frac{7\left(y + ENT\left(\frac{m+9}{12}\right)\right)}{4}\right] + ENT\left(\frac{275m}{9}\right) + d + 1721013.5$$
(2.1)

y sumarle las horas expresadas en días. Por tanto

$$JD = J_0 + \frac{h}{24} \tag{2.2}$$

Nota 2.2.1: La mayoría de software de cálculo permiten calcular el día juliano de un instante mediante un solo comando. Por ejemplo JulianDate en MATHEMATICA o juliandate en Matlab.

EJEMPLO 2.2.1 Calcula los días julianos que corresponden al 9 de Febrero de 2020 a las 20:15:50 (UT) y a una fecha que se usa a menudo como referencia, mediodía del 1 de Enero de 2000, conocida como J_{2000} .

Solución: En ambos casos, aplicando (2.1) y (2.2), debemos hallar primero su correspondiente J_0 y luego sumarle la UT expresada en días:

 $^2\mathrm{V\acute{a}lida}$ entre 1901 y 2099

¹Se mide desde el mediodía porque las observaciones astronómicas eran mayoritariamente nocturnas y se quería evitar tener un cambio de fecha en las series de observaciones

$$JD = 2458888.5 + \frac{20 + \frac{15}{60} + \frac{50}{3600}}{24} = 2458889.344$$
$$J_{2000} = 2451544.5 + \frac{12}{24} = 2451545.0$$

El **Tiempo Sidéreo** es el medido por la rotación de la Tierra respecto a las estrellas fijas definiendo de esta manera el **día sidéreo** (24 horas sidéreas): tiempo transcurrido en completar la Tierra una vuelta completa sobre sí misma respecto a las estrellas. Ver figura 2.1.

Como consecuencia de la definición el día sidéreo es más corto que el día solar $(23h\ 56')$ y si la Tierra gira 360^o en un día sidéreo entonces, gira 360.986^o en un día solar.

Para saber la situación de un punto en un instante respecto al Sistema de referencia Geocéntrico-Ecuatorial es necesario conocer el tiempo sidéreo de un lugar. Se llama **Tiempo Sidéreo Local** (Θ_L o TSL) u **Hora Sidérea Local** de un lugar al tiempo transcurrido desde que el meridiano del lugar pasó sobre el Punto Vernal, es decir, el ángulo medido hacia el Este desde el Punto Vernal hasta el meridiano del lugar expresado en horas). En consecuencia, Θ_L es el ángulo horario que forma el Punto Vernal con el Meridiano del observador.

Para calcular la hora sidérea (Θ_L) de un lugar con longitud geográfica λ en un momento determinado UT, basta sumar la hora sidérea de Greenwich Θ_G , que deberá ser calculada previamente, y la longitud positiva (al Este). A continuación se muestra el proceso a seguir para hacer ese cálculo.

Cálculo del TSL (Θ_L) para un lugar y momento determinados

<u>Paso 1</u>: Determinar J_0 para la fecha mediante la ecuación (2.1)

<u>Paso 2</u>: Calcular el tiempo T_0 en siglos julianos entre J_0 y J_{2000} :

$$T_0 = \frac{J_0 - J_{2000}}{36525}$$

<u>Paso 3</u>: Hallar el tiempo sidéreo en Greenwich a las 0h UT con la expresión:

 $\Theta_{G_0} = 100.4606184 + 36000.77004 \, T_0 + 0.000387933 \, T_0^2 - 2.583 \cdot 10^{-8} \, T_0^3 \quad (grados)$

Si $\Theta_{G_0} \notin [0^o, 360^o]$ debemos sumar/restar múltiplos de 360° hasta conseguir estar en ese intervalo.

<u>Paso 4</u>: Hallar la hora sidérea en Greenwich Θ_G para la UT, teniendo en cuenta que la Tierra rota cada día solar más de 360° respecto a las estrellas:

$$\Theta_G = \Theta_{G0} + 360.98564724 \frac{UT}{24} \quad (grados)$$

Paso 5: Hallar la hora sidérea local sumando la longitud geográfica en grados:

$$\Theta_L = \Theta_G + \lambda \, (grados)$$

(Si $\Theta_L > 360^\circ$ debemos restar múltiplos de 360° hasta estar entre 0° y 360°)

Podemos ver una representación de estos ángulos en la figura 2.2.

Figura 2.2: Tiempos sidéreos (medidos desde γ): Θ_{G_0} (Hora sidérea en Greenwich a las 0h UT), Θ_G (Hora sidérea en Greenwich) y Θ_L (Hora sidérea del lugar).

EJEMPLO 2.2.2 Halla la hora sidérea local en la UPV el 9 de Febrero de 2020 a las 20:15:50 UT.

Solución: Ralizando todos los pasos inidicados

Paso 1: Utilizando la igualdad (2.1):

$$J_0 = 2458888.5$$

Paso 2:

$$T_0 = \frac{J_0 - J_{2000}}{36525} = \frac{2458888.5 - 2451545.0}{36525} = 0.201054073$$

Paso 3: La hora sidérea de Greenwich a las 0h de UT:

$$\Theta_{G_0} = 100.4606184 + 36000.77004 T_0 + 0.000387933 T_0^2 - 2.583 \cdot 10^{-8} T_0^3 = 7338.56^o \rightarrow 138.56207^o$$

Paso 4: La hora sidérea de Greenwich a las 20:15:50 de UT:

$$\Theta_G = \Theta_{G0} + 360.98564724 \frac{20 + \frac{15}{60} + \frac{50}{3600}}{24} = 138.56207 + 360.98564724 \frac{20.263889}{24} = 443.35261^o$$

Paso 5: Como $\lambda_{UPV} = 360^{\circ} - 0.343578^{\circ} = 359.65642^{\circ}$ $\Theta_L = \Theta_G + \lambda = 443.35261 + 359.65642 = 803.00903^{\circ} \rightarrow 83.00903^{\circ} \sim 5.53394 h$

2.3 Paso de Geocéntrico-Ecuatoriales a Heliocéntrico-Eclípticas y viceversa

El sistema **Heliocéntrico-Eclíptico** es utilizado en misiones interplanetarias cuando las naves escapan de las esferas de influencia de los planetas y se caracteriza por estar centrado en el Sol, por tener como plano de referencia la Eclíptica y el eje principal X_{ϵ} apuntando al Punto Vernal (figura 2.3).

Cuando estamos dentro de la esfera de influencia de la Tierra (SOI) el sistema utiliado es el **Geocéntrico-Ecuatorial** que está centrado en el centro de la Tierra, su plano de referencia es el plano ecuatorial y la dirección principal X_{GE} coincide con el Punto Vernal y por tanto con el eje X_{ϵ} (figura 2.4).

Por tanto para cambiar las coordenadas de una nave S de **Geocéntrico-Ecuatoriales** a **Heliocéntrico-Eclípticas** será necesario hacer un giro de ángulo ε alrededor del eje X (común a ambos sistemas) para obtener geocéntrico-eclípticas y después sumar la posición heliocéntrico-eclíptica de la Tierra³ para obtener las coordenadas heliocéntrico-eclípticas de S (figuras 2.3 y 2.4).

Geocéntrico-Ecuatorial

De esta manera si consideramos que las coordenadas geocéntrico-ecuatoriales de la nave son $(X_{GE}, Y_{GE}, Z_{GE})_S$ la expresión de este cambio será:

³Calculada mediante efemérides

Para seguir leyendo, inicie el proceso de compra, click aquí